Menu Close

factor-x-3-x-2-x-1-3-and-x-3-x-2-x-1-3-and-x-3-x-2-x-1-3-




Question Number 50925 by kaivan.ahmadi last updated on 22/Dec/18
factor  x^3 +x^2 +x−(1/3)   and  x^3 +x^2 −x+(1/3)  and  x^3 +x^2 −x−(1/3)
factorx3+x2+x13andx3+x2x+13andx3+x2x13
Commented by Abdo msup. last updated on 23/Dec/18
let p(x)=x^3  +x^2  +x−(1/3) let find the roots changement x=t−(1/3)  give p(x)=(t−(1/3))^3  +(t−(1/3))^2  +t−(2/3)  =t^3  −3 t^2 .(1/3) +3t (1/9) −(1/(27)) + t^2 −(2/3)t  +(1/9) +t−(2/3)  =t^3  −t^2  +(t/3) +t^2  +(1/3)t  +((−1+3−18)/(27))  =t^3  +(2/3)t  −((16)/(27))  =g(t) let solve g(t)=0  with t=u+v  we get (u+v)^3  +(2/3)(u+v)−((16)/(27)) =0 ⇒  u^3  +v^3  +3uv(u+v) +(2/3)(u+v)−((16)/(27)) =0 ⇒  u^3  +v^3 −((16)/(27)) =0 and  3uv +(2/3) =0 ⇒  u^3  +v^3  =((16)/(27)) and uv=−(2/9) ⇒  u^3  +v^3 =((16)/(27)) and  u^3 v^3 =((−8)/(729))  so u^3  and v^3  are solution  of the equation z^2 −((16)/(27)) z −(8/(729)) =0...  Δ =(−((16)/(27)))^2  +((32)/(729)) >0 ⇒z_1 =((((16)/(27))+(√(((16^2 )/(27^2 ))+((32)/(729)))))/2)  z_2 =... be continued...
letp(x)=x3+x2+x13letfindtherootschangementx=t13givep(x)=(t13)3+(t13)2+t23=t33t2.13+3t19127+t223t+19+t23=t3t2+t3+t2+13t+1+31827=t3+23t1627=g(t)letsolveg(t)=0witht=u+vweget(u+v)3+23(u+v)1627=0u3+v3+3uv(u+v)+23(u+v)1627=0u3+v31627=0and3uv+23=0u3+v3=1627anduv=29u3+v3=1627andu3v3=8729sou3andv3aresolutionoftheequationz21627z8729=0Δ=(1627)2+32729>0z1=1627+162272+327292z2=becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *