Menu Close

factorise-cos-cos3-cos5-cos7-




Question Number 63460 by Rio Michael last updated on 04/Jul/19
factorise  cosθ−cos3θ−cos5θ +cos7θ
$${factorise} \\ $$$${cos}\theta−{cos}\mathrm{3}\theta−{cos}\mathrm{5}\theta\:+{cos}\mathrm{7}\theta \\ $$
Commented by Tony Lin last updated on 04/Jul/19
cosθ−cos3θ−(cos5θ−cos7θ)  =−2sin2θsin(−θ)−[−2sin6θsin(−θ)]  =2sin2θsinθ−2sin6θsinθ  =2sinθ(sin2θ−sin6θ)  =2sinθ[2cos4θsin(−2θ)]  =−4sinθcos4θsin2θ
$${cos}\theta−{cos}\mathrm{3}\theta−\left({cos}\mathrm{5}\theta−{cos}\mathrm{7}\theta\right) \\ $$$$=−\mathrm{2}{sin}\mathrm{2}\theta{sin}\left(−\theta\right)−\left[−\mathrm{2}{sin}\mathrm{6}\theta{sin}\left(−\theta\right)\right] \\ $$$$=\mathrm{2}{sin}\mathrm{2}\theta{sin}\theta−\mathrm{2}{sin}\mathrm{6}\theta{sin}\theta \\ $$$$=\mathrm{2}{sin}\theta\left({sin}\mathrm{2}\theta−{sin}\mathrm{6}\theta\right) \\ $$$$=\mathrm{2}{sin}\theta\left[\mathrm{2}{cos}\mathrm{4}\theta{sin}\left(−\mathrm{2}\theta\right)\right] \\ $$$$=−\mathrm{4}{sin}\theta{cos}\mathrm{4}\theta{sin}\mathrm{2}\theta \\ $$
Commented by Tony Lin last updated on 04/Jul/19
sinα+sinβ=2sin((α+β)/2)cos((a−β)/2)  sinα−sinβ=2cos((α+β)/2)sin((α−β)/2)  cosα+cosβ=2cos((α+β)/2)cos((α−β)/2)  cosα−cosβ=−2sin((α+β)/2)sin((α−β)/2)
$${sin}\alpha+{sin}\beta=\mathrm{2}{sin}\frac{\alpha+\beta}{\mathrm{2}}{cos}\frac{{a}−\beta}{\mathrm{2}} \\ $$$${sin}\alpha−{sin}\beta=\mathrm{2}{cos}\frac{\alpha+\beta}{\mathrm{2}}{sin}\frac{\alpha−\beta}{\mathrm{2}} \\ $$$${cos}\alpha+{cos}\beta=\mathrm{2}{cos}\frac{\alpha+\beta}{\mathrm{2}}{cos}\frac{\alpha−\beta}{\mathrm{2}} \\ $$$${cos}\alpha−{cos}\beta=−\mathrm{2}{sin}\frac{\alpha+\beta}{\mathrm{2}}{sin}\frac{\alpha−\beta}{\mathrm{2}} \\ $$
Answered by MJS last updated on 04/Jul/19
cos θ       −cos 3θ            −cos 5θ                 +cos 7θ  =  cos θ       +4sin^2  θ cos θ −cos θ            +16sin^2  θ cos^3  θ +4cos^3  θ −5cos θ                 −64sin^2  θ cos^5  θ −48cos^5  θ +56cos^3  θ −7cos θ  =  8cos θ ((8sin^4  θ +1)cos^2  θ −1)
$$\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:−\mathrm{cos}\:\mathrm{3}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:−\mathrm{cos}\:\mathrm{5}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{cos}\:\mathrm{7}\theta \\ $$$$= \\ $$$$\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:+\mathrm{4sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}\:\theta\:−\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:+\mathrm{16sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}^{\mathrm{3}} \:\theta\:+\mathrm{4cos}^{\mathrm{3}} \:\theta\:−\mathrm{5cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{64sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}^{\mathrm{5}} \:\theta\:−\mathrm{48cos}^{\mathrm{5}} \:\theta\:+\mathrm{56cos}^{\mathrm{3}} \:\theta\:−\mathrm{7cos}\:\theta \\ $$$$= \\ $$$$\mathrm{8cos}\:\theta\:\left(\left(\mathrm{8sin}^{\mathrm{4}} \:\theta\:+\mathrm{1}\right)\mathrm{cos}^{\mathrm{2}} \:\theta\:−\mathrm{1}\right) \\ $$
Commented by Rio Michael last updated on 05/Jul/19
i don′t get these method.
$${i}\:{don}'{t}\:{get}\:{these}\:{method}. \\ $$
Commented by MJS last updated on 05/Jul/19
you need to know  sin (α+β) =cos α sin β +sin α cos β  cos (α+β) =cos α cos β −sin α sin β  cos 3θ =cos (θ+2θ) =cos θ cos 2θ −sin θ sin 2θ =            cos 2θ =cos (θ+θ) =cos^2  θ −sin^2  θ            sin 2θ =sin (θ+θ) =2sin θ cos θ  =cos θ (cos^2  θ −sin^2  θ)−sin θ (2sin θ cos θ)=  =c^3 −cs^2 −2cs^2 =c(c^2 −3s^2 )=c(c^2 +s^2 −4s^2 )=  =c(1−4s^2 )=cos θ −4sin^2  θ cos θ  and so on
$$\mathrm{you}\:\mathrm{need}\:\mathrm{to}\:\mathrm{know} \\ $$$$\mathrm{sin}\:\left(\alpha+\beta\right)\:=\mathrm{cos}\:\alpha\:\mathrm{sin}\:\beta\:+\mathrm{sin}\:\alpha\:\mathrm{cos}\:\beta \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)\:=\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta\:−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta \\ $$$$\mathrm{cos}\:\mathrm{3}\theta\:=\mathrm{cos}\:\left(\theta+\mathrm{2}\theta\right)\:=\mathrm{cos}\:\theta\:\mathrm{cos}\:\mathrm{2}\theta\:−\mathrm{sin}\:\theta\:\mathrm{sin}\:\mathrm{2}\theta\:= \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:\mathrm{2}\theta\:=\mathrm{cos}\:\left(\theta+\theta\right)\:=\mathrm{cos}^{\mathrm{2}} \:\theta\:−\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\:\mathrm{2}\theta\:=\mathrm{sin}\:\left(\theta+\theta\right)\:=\mathrm{2sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$$=\mathrm{cos}\:\theta\:\left(\mathrm{cos}^{\mathrm{2}} \:\theta\:−\mathrm{sin}^{\mathrm{2}} \:\theta\right)−\mathrm{sin}\:\theta\:\left(\mathrm{2sin}\:\theta\:\mathrm{cos}\:\theta\right)= \\ $$$$={c}^{\mathrm{3}} −{cs}^{\mathrm{2}} −\mathrm{2}{cs}^{\mathrm{2}} ={c}\left({c}^{\mathrm{2}} −\mathrm{3}{s}^{\mathrm{2}} \right)={c}\left({c}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{4}{s}^{\mathrm{2}} \right)= \\ $$$$={c}\left(\mathrm{1}−\mathrm{4}{s}^{\mathrm{2}} \right)=\mathrm{cos}\:\theta\:−\mathrm{4sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}\:\theta \\ $$$$\mathrm{and}\:\mathrm{so}\:\mathrm{on} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *