Menu Close

factorise-x-4-4-




Question Number 118184 by mathocean1 last updated on 15/Oct/20
factorise x^4 +4
factorisex4+4
Commented by bemath last updated on 16/Oct/20
(x^2 )^2 +2^2  = (x^2 +2)^2 −4x^2   = (x^2 +2−2x)(x^2 +2+2x)    recall equality a^2 +b^2 = (a+b)^2 −2ab
(x2)2+22=(x2+2)24x2=(x2+22x)(x2+2+2x)recallequalitya2+b2=(a+b)22ab
Answered by Dwaipayan Shikari last updated on 15/Oct/20
x^4 +4+4x^2 −4x^2   (x^2 +2)^2 −(2x)^2 =(x^2 +2x+2)(x^2 −2x+2)
x4+4+4x24x2(x2+2)2(2x)2=(x2+2x+2)(x22x+2)
Commented by mathocean1 last updated on 15/Oct/20
thanks
thanks
Answered by Bird last updated on 16/Oct/20
inside R[x]  x^4 +4 =(x^2 )^2 +2^2  =(x^2 +2)^2 −4x^2   =(x^2 +2−2x)(x^2 +2+2x)  =(x^2 −2x+2)(x^2  +2x +2)  inside C[x] let solve z^4 +4=0 ⇒  z^(4 ) =−4  let z=r e^(iθ)   ⇒r^(4 ) e^(4iθ)  =4e^((2k+1)iπ)  ⇒  r =^4 (√4) and θ =(((2k+1)π)/4)  the roots are z_k =^4 (√4) e^(i(((2k+1)π)/4))   k∈[[0,3]] ⇒  x^4 +4 =Π_(k=0) ^3 (x−z_k )  =(x−z_0 )(x−z_1 )(x−z_2 )(x−z_3 )
insideR[x]x4+4=(x2)2+22=(x2+2)24x2=(x2+22x)(x2+2+2x)=(x22x+2)(x2+2x+2)insideC[x]letsolvez4+4=0z4=4letz=reiθr4e4iθ=4e(2k+1)iπr=44andθ=(2k+1)π4therootsarezk=44ei(2k+1)π4k[[0,3]]x4+4=k=03(xzk)=(xz0)(xz1)(xz2)(xz3)
Commented by MJS_new last updated on 16/Oct/20
x^4 +4=0  ⇒ x=±1±i (all combinations)
x4+4=0x=±1±i(allcombinations)

Leave a Reply

Your email address will not be published. Required fields are marked *