Menu Close

factorize-inside-C-x-p-x-1-i-x-n-n-1-i-x-n-n-




Question Number 30593 by abdo imad last updated on 23/Feb/18
factorize inside C[x] p(x)=(1+i(x/n))^n  −(1−i(x/n))^n .
factorizeinsideC[x]p(x)=(1+ixn)n(1ixn)n.
Answered by sma3l2996 last updated on 23/Feb/18
p(x)=(1+ix/n)^n −(1−ix/n)^n   =n^(−n) ((n+ix)^n −(n−ix)^n )  =(1/n)(√(n^2 +x^2 ))((e^(iθ) )^n −(e^(−iθ) )^n )  \θ=tan^(−1) ((x/n))  =((√(n^2 +x^2 ))/n)(e^(inθ) −e^(−inθ) )=((√(n^2 +x^2 ))/n)(2isin(nθ))  p(x)=2i((√(n^2 +x^2 ))/n)sin(ntan^(−1) ((x/n)))  tan^(−1) (x_k /n)=((kπ)/n) ⇒x_k =ntan(((kπ)/n))   \k=(0,1,2,...,n−1)  so roots of  p(x) are  α_k =ntan(((kπ)/n))  so  p(x)=2i(√(1+((x/n))^2 ))Π_(k=0) ^(n−1) (x−ntan(((kπ)/n)))
p(x)=(1+ix/n)n(1ix/n)n=nn((n+ix)n(nix)n)=1nn2+x2((eiθ)n(eiθ)n)θ=tan1(xn)=n2+x2n(einθeinθ)=n2+x2n(2isin(nθ))p(x)=2in2+x2nsin(ntan1(xn))tan1(xk/n)=kπnxk=ntan(kπn)k=(0,1,2,,n1)sorootsofp(x)areαk=ntan(kπn)sop(x)=2i1+(xn)2k=0n1(xntan(kπn))

Leave a Reply

Your email address will not be published. Required fields are marked *