Menu Close

factorize-inside-C-x-x-2-y-2-z-2-




Question Number 46882 by maxmathsup by imad last updated on 02/Nov/18
factorize inside C[x]  x^2  +y^2  +z^2
$${factorize}\:{inside}\:{C}\left[{x}\right]\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \\ $$
Commented by maxmathsup by imad last updated on 02/Nov/18
we have (x+y+z)^(2 )  =x^(2 )  +y^2  +z^2  +2(xy +yz +zx) ⇒  x^2  +y^2  +z^2  =(x+y+z)^2  −((√(2(xy +yz +zx)))^2  let  2(xy+ yz +zx)=r e^(iθ)  ⇒  x^2  +y^2  +z^2  =(x+y+z)^2  −((√r)e^(i(θ/2)) )^2    =(x+y+z −(√r)e^(i(θ/2)) )(x+y+z +r e^(i(θ/2)) ) .
$${we}\:{have}\:\left({x}+{y}+{z}\right)^{\mathrm{2}\:} \:={x}^{\mathrm{2}\:} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \:+\mathrm{2}\left({xy}\:+{yz}\:+{zx}\right)\:\Rightarrow \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \:=\left({x}+{y}+{z}\right)^{\mathrm{2}} \:−\left(\sqrt{\mathrm{2}\left({xy}\:+{yz}\:+{zx}\right.}\right)^{\mathrm{2}} \:{let}\:\:\mathrm{2}\left({xy}+\:{yz}\:+{zx}\right)={r}\:{e}^{{i}\theta} \:\Rightarrow \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \:=\left({x}+{y}+{z}\right)^{\mathrm{2}} \:−\left(\sqrt{{r}}{e}^{{i}\frac{\theta}{\mathrm{2}}} \right)^{\mathrm{2}} \: \\ $$$$=\left({x}+{y}+{z}\:−\sqrt{{r}}{e}^{{i}\frac{\theta}{\mathrm{2}}} \right)\left({x}+{y}+{z}\:+{r}\:{e}^{{i}\frac{\theta}{\mathrm{2}}} \right)\:. \\ $$
Commented by maxmathsup by imad last updated on 02/Nov/18
another method we have  x^2  +y^2  +z^2  =x^2  −(i(√(y^(2 ) +z^2 )))^2 =(x−i(√(y^2  +z^2 )))(x+i(√(y^2  +z^2 ))) or  x^2  +y^2  +z^2  =x^2  +y^2  −(iz)^2  =((√(x^2  +y^2 ))−iz)((√(x^2  +y^2 ))+iz)
$${another}\:{method}\:{we}\:{have} \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \:={x}^{\mathrm{2}} \:−\left({i}\sqrt{{y}^{\mathrm{2}\:} +{z}^{\mathrm{2}} }\right)^{\mathrm{2}} =\left({x}−{i}\sqrt{{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\right)\left({x}+{i}\sqrt{{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\right)\:{or} \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \:={x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−\left({iz}\right)^{\mathrm{2}} \:=\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }−{iz}\right)\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }+{iz}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *