Menu Close

Factorize-x-2-1-a-bx-c-




Question Number 191436 by MATHEMATICSAM last updated on 24/Apr/23
Factorize  x^2  + (1/a) (bx + c)
$$\mathrm{Factorize} \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\boldsymbol{{a}}}\:\left(\boldsymbol{{bx}}\:+\:\boldsymbol{{c}}\right) \\ $$
Answered by Matica last updated on 24/Apr/23
x^2 +((bx+c)/a) = x^2 +(b/a)x + (c/a)                        = x^2  + 2(x)((b/(2a)))+((b/(2a)))^2 −((b/(2a)))^2 +(c/a)                       = (x + (b/(2a)))^2 −((b^2 /(4a^2 ))−((4ac)/(4a^2 )))                       = (x + (b/(2a)))^2 −(((b^2 −4ac)/(4a^2 )))                       = (x + (b/(2a)))^2 −(((√(b^2 −4ac))/(2a)))^2                        = (x + (b/(2a))+((b^2 −4ac)/(2a)))(x + (b/(2a))−((b^2 −4ac)/(2a)))  so    x^2 +(1/a)(bx+c)  = (x + ((b+(√(b^2 −4ac)))/(2a)))(x + ((b−(√(b^2 −4ac)))/(2a)))
$${x}^{\mathrm{2}} +\frac{{bx}+{c}}{{a}}\:=\:{x}^{\mathrm{2}} +\frac{{b}}{{a}}{x}\:+\:\frac{{c}}{{a}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}^{\mathrm{2}} \:+\:\mathrm{2}\left({x}\right)\left(\frac{{b}}{\mathrm{2}{a}}\right)+\left(\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} −\left(\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} +\frac{{c}}{{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({x}\:+\:\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} −\left(\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }−\frac{\mathrm{4}{ac}}{\mathrm{4}{a}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({x}\:+\:\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} −\left(\frac{{b}^{\mathrm{2}} −\mathrm{4}{ac}}{\mathrm{4}{a}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({x}\:+\:\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} −\left(\frac{\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({x}\:+\:\frac{{b}}{\mathrm{2}{a}}+\frac{{b}^{\mathrm{2}} −\mathrm{4}{ac}}{\mathrm{2}{a}}\right)\left({x}\:+\:\frac{{b}}{\mathrm{2}{a}}−\frac{{b}^{\mathrm{2}} −\mathrm{4}{ac}}{\mathrm{2}{a}}\right) \\ $$$${so}\: \\ $$$$\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}}\left({bx}+{c}\right)\:\:=\:\left({x}\:+\:\frac{{b}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}}\right)\left({x}\:+\:\frac{{b}−\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *