Menu Close

Factorize-x-2-2x-x-2-




Question Number 174036 by nadovic last updated on 23/Jul/22
  Factorize x^2  + (√(2x ))+ x + 2
$$\:\:\mathrm{Factorize}\:{x}^{\mathrm{2}} \:+\:\sqrt{\mathrm{2}{x}\:}+\:{x}\:+\:\mathrm{2} \\ $$
Answered by dragan91 last updated on 23/Jul/22
x^ =t^2   t^4 +t(√2)+t^2 +2  t^4 +2t(√2)−t(√2)+t^2 +2=  t(t^3 +((√2))^3 )+(t^2 −t(√2)+2)=  t(t+(√2))(t^2 −t(√2)+2)+(t^2 −t(√2)+2)=  (t^2 −t(√2)+2)(t^2 +t(√2)+1)  (x−(√(2x))+2)(x+(√(2x))+1)
$$\mathrm{x}^{} =\mathrm{t}^{\mathrm{2}} \\ $$$$\mathrm{t}^{\mathrm{4}} +\mathrm{t}\sqrt{\mathrm{2}}+\mathrm{t}^{\mathrm{2}} +\mathrm{2} \\ $$$$\mathrm{t}^{\mathrm{4}} +\mathrm{2t}\sqrt{\mathrm{2}}−\mathrm{t}\sqrt{\mathrm{2}}+\mathrm{t}^{\mathrm{2}} +\mathrm{2}= \\ $$$$\mathrm{t}\left(\mathrm{t}^{\mathrm{3}} +\left(\sqrt{\mathrm{2}}\right)^{\mathrm{3}} \right)+\left(\mathrm{t}^{\mathrm{2}} −\mathrm{t}\sqrt{\mathrm{2}}+\mathrm{2}\right)= \\ $$$$\mathrm{t}\left(\mathrm{t}+\sqrt{\mathrm{2}}\right)\left(\mathrm{t}^{\mathrm{2}} −\mathrm{t}\sqrt{\mathrm{2}}+\mathrm{2}\right)+\left(\mathrm{t}^{\mathrm{2}} −\mathrm{t}\sqrt{\mathrm{2}}+\mathrm{2}\right)= \\ $$$$\left(\mathrm{t}^{\mathrm{2}} −\mathrm{t}\sqrt{\mathrm{2}}+\mathrm{2}\right)\left(\mathrm{t}^{\mathrm{2}} +\mathrm{t}\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$$$\left(\mathrm{x}−\sqrt{\mathrm{2x}}+\mathrm{2}\right)\left(\mathrm{x}+\sqrt{\mathrm{2x}}+\mathrm{1}\right) \\ $$$$ \\ $$
Commented by nadovic last updated on 23/Jul/22
Thank you Sir
$${Thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *