Menu Close

Factorize-x-5-y-5-




Question Number 35256 by bivekverma last updated on 17/May/18
Factorize :x^5 −y^5
Factorize:x5y5
Commented by abdo mathsup 649 cc last updated on 18/May/18
let factorize x^n  −y^n   for n integr  letsuppose y≠o  x^n  −y^n =y^n  (  ((x/y))^n  −1)  =y^n (  (x/y)−1)( 1  +(x/y) +(x^2 /y^2 ) +....(x^(n−1) /y^(n−1) ))  =y^(n−1) (x−y)( 1+ (x/y) +(x^2 /y^2 ) + ....(x^(n−1) /y^(n−1) ))  =(x−y)( y^(n−1)   +xy^(n−2)  +x^2 y^(n−3)  +...+x^(n−1) ) for  n=5 we get  x^5  −y^5 =(x−y)(y^4  +xy^3  +x^2  y^2  +x^3 y +x^4 )  =(x−y)(x^4  +x^3 y +x^2 y^2   +xy^3  +y^4 )  we see that x^n −y^n =(x−y)Σ_(i+j=n−1) x^i y^j
letfactorizexnynfornintegrletsupposeyoxnyn=yn((xy)n1)=yn(xy1)(1+xy+x2y2+.xn1yn1)=yn1(xy)(1+xy+x2y2+.xn1yn1)=(xy)(yn1+xyn2+x2yn3++xn1)forn=5wegetx5y5=(xy)(y4+xy3+x2y2+x3y+x4)=(xy)(x4+x3y+x2y2+xy3+y4)weseethatxnyn=(xy)i+j=n1xiyj
Answered by MJS last updated on 17/May/18
x^5 −y^5 =(x−y)(x^4 +x^3 y+x^2 y^2 +xy^3 +y^4 )
x5y5=(xy)(x4+x3y+x2y2+xy3+y4)

Leave a Reply

Your email address will not be published. Required fields are marked *