Menu Close

find-0-1-1-x-2-1-x-3-dx-




Question Number 42792 by maxmathsup by imad last updated on 02/Sep/18
find ∫_0 ^1   ((1+x^2 )/(1+x^3 ))dx
find011+x21+x3dx
Commented by behi83417@gmail.com last updated on 03/Sep/18
I=(1/3)ln(1+x^3 )+A.ln(1+x)+B.ln((x−a)/(x−b))+c
I=13ln(1+x3)+A.ln(1+x)+B.lnxaxb+c
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
∫_0 ^1 (dx/(1+x^3 ))+(1/3)∫_0 ^1 ((3x^2 )/(1+x^3 ))  ∫_0 ^1 (dx/((1+x)(1−x+x^2 )))+(1/3)∫_0 ^1 ((d(1+x^3 ))/(1+x^3 ))  I_2 =(1/3)∫_0 ^1 ((d(1+x^3 ))/(1+x^3 ))=(1/3)∣ln(1+x^3 )∣_0 ^1 =(1/3)ln2  now  (1/((1+x)(1−x+x^2 )))=(a/(1+x))+((bx+c)/(x^2 −x+1))  1=a(x^2 −x+1)+(bx+c)(1+x)  1=ax^2 −ax+a+bx+bx^2 +c+cx  contd  1=x^2 (a+b)+x(−a+b+c)+(a+c)  a+b=0   −a+b+c=0    a+c=1  −a−a+c=0   c=2a    a+2a=1  a=(1/3)   b=((−1)/3)   c=(2/3)  I_1 =∫_0 ^1 {(a/(1+x))+((bx+c)/(x^2 −x+1)) }dx  =(1/3)∫_(0 ) ^1 (dx/(1+x))+(1/3)∫_0 ^1 ((−x+2)/(x^2 −x+1))dx  =(1/3)∫_0 ^1 (dx/(1+x))−(1/6)∫_0 ^1 ((2x−1−3)/(x^2 −x+1))dx  =(1/3)ln2−(1/6)∫_0 ^1 ((d(x^2 −x+1))/(x^2 −x+1))+(1/2)∫_0 ^1 (dx/((x^2 −2.x.(1/2)+(1/4)+1−(1/4))))  =(1/3)ln2−(1/6)∣ln(x^2 −x+1)∣_0 ^1 +(1/2)∫_0 ^1 (dx/((x−(1/2))^2 +(((√3)/2))^2 ))  =(1/3)ln2−(1/6)×0+(1/2)×(2/( (√3)))∣tan^(−1) (((x−(1/2))/((√3)/2)))∣_0 ^1   =(1/3)ln2+(1/( (√3))){tan^(−1) (1/( (√3)))−tan^(−1) (−(1/( (√3))))}  =(1/3)ln2+(2/( (√3)))×(Π/6)=(1/3)ln2+(Π/(3(√3)))  clmplete ans is =(2/3)ln2+(Π/(3(√3)))
01dx1+x3+13013x21+x301dx(1+x)(1x+x2)+1301d(1+x3)1+x3I2=1301d(1+x3)1+x3=13ln(1+x3)01=13ln2now1(1+x)(1x+x2)=a1+x+bx+cx2x+11=a(x2x+1)+(bx+c)(1+x)1=ax2ax+a+bx+bx2+c+cxcontd1=x2(a+b)+x(a+b+c)+(a+c)a+b=0a+b+c=0a+c=1aa+c=0c=2aa+2a=1a=13b=13c=23I1=01{a1+x+bx+cx2x+1}dx=1301dx1+x+1301x+2x2x+1dx=1301dx1+x16012x13x2x+1dx=13ln21601d(x2x+1)x2x+1+1201dx(x22.x.12+14+114)=13ln216ln(x2x+1)01+1201dx(x12)2+(32)2=13ln216×0+12×23tan1(x1232)01=13ln2+13{tan113tan1(13)}=13ln2+23×Π6=13ln2+Π33clmpleteansis=23ln2+Π33

Leave a Reply

Your email address will not be published. Required fields are marked *