find-0-1-1-x-2-1-x-3-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42792 by maxmathsup by imad last updated on 02/Sep/18 find∫011+x21+x3dx Commented by behi83417@gmail.com last updated on 03/Sep/18 I=13ln(1+x3)+A.ln(1+x)+B.lnx−ax−b+c Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18 ∫01dx1+x3+13∫013x21+x3∫01dx(1+x)(1−x+x2)+13∫01d(1+x3)1+x3I2=13∫01d(1+x3)1+x3=13∣ln(1+x3)∣01=13ln2now1(1+x)(1−x+x2)=a1+x+bx+cx2−x+11=a(x2−x+1)+(bx+c)(1+x)1=ax2−ax+a+bx+bx2+c+cxcontd1=x2(a+b)+x(−a+b+c)+(a+c)a+b=0−a+b+c=0a+c=1−a−a+c=0c=2aa+2a=1a=13b=−13c=23I1=∫01{a1+x+bx+cx2−x+1}dx=13∫01dx1+x+13∫01−x+2x2−x+1dx=13∫01dx1+x−16∫012x−1−3x2−x+1dx=13ln2−16∫01d(x2−x+1)x2−x+1+12∫01dx(x2−2.x.12+14+1−14)=13ln2−16∣ln(x2−x+1)∣01+12∫01dx(x−12)2+(32)2=13ln2−16×0+12×23∣tan−1(x−1232)∣01=13ln2+13{tan−113−tan−1(−13)}=13ln2+23×Π6=13ln2+Π33clmpleteansis=23ln2+Π33 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-108326Next Next post: find-f-a-0-1-dt-a-2-t-2-3-with-a-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.