Menu Close

find-0-1-1-x-4-dx-




Question Number 51550 by maxmathsup by imad last updated on 28/Dec/18
find ∫_0 ^1 (√(1+x^4 ))dx
find011+x4dx
Commented by Abdo msup. last updated on 29/Dec/18
let I =∫_0 ^1 (√(1+x^4 ))dx  no elementary function so  we give I at form of serie  we have (1+u)^α  =1+((αu)/(1!)) +((α(α−1))/(2!)) u^2  +  ...((α(α−1)...(α−n+1))/(n!)) u^n  +...⇒  (1+x^4 )^(1/4)  =1+(1/4)x^4  +(1/2)(1/4)((1/4)−1)x^8  +...  (((1/4)((1/4)−1)...((1/4)−n+1))/(n!)) x^(4n)  +...  =1+(x^4 /4) −(3/(32)) x^8   +...⇒  I ∼  ∫_0 ^1 (1+(x^4 /4) −(3/(32)) x^8 )dx  =[x +(x^5 /(20)) −(3/(9.32)) x^9 ]_0 ^1 =1+(1/(20)) −(1/(96))  =((21)/(20)) −(1/(96)) .
letI=011+x4dxnoelementaryfunctionsowegiveIatformofseriewehave(1+u)α=1+αu1!+α(α1)2!u2+α(α1)(αn+1)n!un+(1+x4)14=1+14x4+1214(141)x8+14(141)(14n+1)n!x4n+=1+x44332x8+I01(1+x44332x8)dx=[x+x52039.32x9]01=1+120196=2120196.
Commented by Abdo msup. last updated on 29/Dec/18
I ∼1,04
I1,04
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Dec/18

Leave a Reply

Your email address will not be published. Required fields are marked *