Question Number 51550 by maxmathsup by imad last updated on 28/Dec/18
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$
Commented by Abdo msup. last updated on 29/Dec/18
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:\:{no}\:{elementary}\:{function}\:{so} \\ $$$${we}\:{give}\:{I}\:{at}\:{form}\:{of}\:{serie} \\ $$$${we}\:{have}\:\left(\mathrm{1}+{u}\right)^{\alpha} \:=\mathrm{1}+\frac{\alpha{u}}{\mathrm{1}!}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}!}\:{u}^{\mathrm{2}} \:+ \\ $$$$…\frac{\alpha\left(\alpha−\mathrm{1}\right)…\left(\alpha−{n}+\mathrm{1}\right)}{{n}!}\:{u}^{{n}} \:+…\Rightarrow \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{4}} \:+\frac{\mathrm{1}}{\mathrm{2}}\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}\right){x}^{\mathrm{8}} \:+… \\ $$$$\frac{\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}\right)…\left(\frac{\mathrm{1}}{\mathrm{4}}−{n}+\mathrm{1}\right)}{{n}!}\:{x}^{\mathrm{4}{n}} \:+… \\ $$$$=\mathrm{1}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\:−\frac{\mathrm{3}}{\mathrm{32}}\:{x}^{\mathrm{8}} \:\:+…\Rightarrow \\ $$$${I}\:\sim\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\:−\frac{\mathrm{3}}{\mathrm{32}}\:{x}^{\mathrm{8}} \right){dx} \\ $$$$=\left[{x}\:+\frac{{x}^{\mathrm{5}} }{\mathrm{20}}\:−\frac{\mathrm{3}}{\mathrm{9}.\mathrm{32}}\:{x}^{\mathrm{9}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{20}}\:−\frac{\mathrm{1}}{\mathrm{96}} \\ $$$$=\frac{\mathrm{21}}{\mathrm{20}}\:−\frac{\mathrm{1}}{\mathrm{96}}\:. \\ $$$$ \\ $$
Commented by Abdo msup. last updated on 29/Dec/18
$${I}\:\sim\mathrm{1},\mathrm{04} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Dec/18