Question Number 172953 by Mathspace last updated on 03/Jul/22
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{lnx}\:{dx} \\ $$
Answered by Ar Brandon last updated on 03/Jul/22
$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }\mathrm{ln}{xdx}\:,\:{x}={t}^{\frac{\mathrm{1}}{\mathrm{4}}} \: \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{16}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{−\frac{\mathrm{3}}{\mathrm{4}}} \sqrt{\mathrm{1}−{t}}\mathrm{ln}{tdt}=\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\partial}{\partial\alpha}\mid_{\alpha=\frac{\mathrm{1}}{\mathrm{4}}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\alpha−\mathrm{1}} \sqrt{\mathrm{1}−{t}}{dt} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\partial}{\partial\alpha}\mid_{\alpha=\frac{\mathrm{1}}{\mathrm{4}}} \beta\left(\alpha,\:\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\partial}{\partial\alpha}\:\frac{\Gamma\left(\alpha\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{\mathrm{1}}{\mathrm{2}}}{\Gamma\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}\:_{\alpha=\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\:\:\:\:=\frac{\sqrt{\pi}}{\mathrm{32}}\centerdot\left(\frac{\Gamma'\left(\alpha\right)}{\Gamma\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}−\frac{\Gamma\left(\alpha\right)\psi\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}\right)_{\alpha=\frac{\mathrm{1}}{\mathrm{4}}} =\frac{\sqrt{\pi}}{\mathrm{32}}\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\psi\left(\frac{\mathrm{7}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{7}}{\mathrm{4}}\right)}\right) \\ $$$$\:\:\:\:=\frac{\sqrt{\pi}}{\mathrm{32}}\centerdot\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\frac{\mathrm{3}}{\mathrm{4}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\left(\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$$$\:\:\:\:=\frac{\sqrt{\pi}}{\mathrm{24}}\centerdot\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\pi\sqrt{\mathrm{2}}}\left(−\pi\mathrm{cot}\left(\frac{\pi}{\mathrm{4}}\right)−\frac{\mathrm{4}}{\mathrm{3}}\right)=−\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{48}\pi}\left(\frac{\mathrm{3}\pi+\mathrm{4}}{\mathrm{3}}\right)\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$
Commented by Ar Brandon last updated on 04/Jul/22
Commented by Ar Brandon last updated on 04/Jul/22
Commented by Tawa11 last updated on 06/Jul/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by Mathspace last updated on 04/Jul/22
$$\Upsilon=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{lnx}\:{dx}\:{changement} \\ $$$${x}^{\mathrm{4}} ={t}\:{give} \\ $$$$\Upsilon=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{t}}{ln}\left({t}^{\frac{\mathrm{1}}{\mathrm{4}}} \right).\frac{\mathrm{1}}{\mathrm{4}}{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {lnt}\:{dt} \\ $$$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dt}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {lnt}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {lnt}\:{dt}={f}^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${we}\:{have}\:{f}\left({a}\right)={B}\left({a},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$=\frac{\Gamma\left({a}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left({a}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\Gamma\left({a}+\frac{\mathrm{3}}{\mathrm{2}}\right)=\Gamma\left({a}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right) \\ $$$$=\left({a}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left({a}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${f}\left({a}\right)=\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\Gamma\left({a}\right)}{\Gamma\left({a}+\frac{\mathrm{3}}{\mathrm{2}}\right)}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)=\frac{\sqrt{\pi}}{\mathrm{2}}.\frac{\Gamma^{'} \left({a}\right)\Gamma\left({a}+\frac{\mathrm{3}}{\mathrm{2}}\right)−\Gamma\left({a}\right)\Gamma^{'} \left({a}+\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left({a}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow{f}^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}}.\frac{\Gamma^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}}.\frac{\Gamma^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{7}}{\mathrm{4}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma^{'} \left(\frac{\mathrm{7}}{\mathrm{4}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{7}}{\mathrm{4}}\right)} \\ $$$${and}\:\Upsilon=\frac{\mathrm{1}}{\mathrm{16}}{f}^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$
Commented by Tawa11 last updated on 06/Jul/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$