Question Number 82871 by abdomathmax last updated on 25/Feb/20
$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\mid{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \mid{dxdy} \\ $$
Commented by mathmax by abdo last updated on 25/Feb/20
$${I}\:=\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\mid{x}+{y}\mid\mid{x}−{y}\mid{dxdy}\:=\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\left({x}+{y}\right)\mid{x}−{y}\mid{dxdy} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\:\:\int_{\mathrm{0}} ^{{x}} \left({x}+{y}\right)\mid{x}−{y}\mid{dy}\:+\int_{{x}} ^{\mathrm{1}} \:\left({x}+{y}\right)\mid{x}−{y}\mid{dy}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\int_{\mathrm{0}} ^{{x}} \left({x}+{y}\right)\left({x}−{y}\right){dy}\:+\int_{{x}} ^{\mathrm{1}} \left({x}+{y}\right)\left({y}−{x}\right){dy}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\int_{\mathrm{0}} ^{{x}} \left({x}+{y}\right)\left({x}−{y}\right){dy}\right){dx}\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\int_{{x}} ^{\mathrm{1}} \left({y}+{x}\right)\left({y}−{x}\right){dy}\right){dx} \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{{x}} \left({x}+{y}\right)\left({x}−{y}\right){dy}\:=\int_{\mathrm{0}} ^{{x}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy} \\ $$$$={x}^{\mathrm{3}} −\left[\frac{\mathrm{1}}{\mathrm{3}}{y}^{\mathrm{3}} \right]_{\mathrm{0}} ^{{x}} \:={x}^{\mathrm{3}} −\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:=\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}} \:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left(….{dy}\right){dx}\:=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{3}} \:{dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{1}}{\mathrm{4}}\:=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\int_{{x}} ^{\mathrm{1}} \left({y}+{x}\right)\left({y}−{x}\right){dy}\:=\int_{{x}} ^{\mathrm{1}} \left({y}^{\mathrm{2}} −{x}^{\mathrm{2}} \right){dy}\:=\left[\frac{{y}^{\mathrm{3}} }{\mathrm{3}}\right]_{{x}} ^{\mathrm{1}} −{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \:\:=\frac{\mathrm{1}}{\mathrm{3}}−{x}^{\mathrm{2}} \:+\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(….{dy}\right){dx}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}−{x}^{\mathrm{2}} \:+\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}} \right){dx}\:=\left[\frac{{x}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} +\frac{\mathrm{2}}{\mathrm{12}}{x}^{\mathrm{4}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\:\Rightarrow{I}\:=\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{6}}\:=\frac{\mathrm{1}}{\mathrm{3}} \\ $$