Find-0-1-arctan-2-x-dx- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 159534 by HongKing last updated on 18/Nov/21 Find:Ω=∫10arctan2(x)dx Answered by chhaythean last updated on 18/Nov/21 let{u=arctan2(x)⇒du=2arctan(x)1+x2dxdv=1dx⇒v=xΩ=[x⋅arctan2(x)]01−2∫01x⋅arctan(x)1+x2dx=π216−2∫01x⋅arctan(x)1+x2dx∙Solvefor∫01x⋅arctan(x)1+x2dxletx=tanθ⇒dx=sec2θdθ=∫0π4(θ⋅tanθ)dθlet{u=θ⇒du=dθdv=tanθdθ⇒v=−ln∣cosθ∣=[−θ⋅ln∣cosθ∣]0π4+∫0π4ln∣cosθ∣dθ=[θ⋅ln∣secθ∣]0π4+∫0π4ln∣cosθ∣dθ=π8ln2+∫0π4ln∣cosθ∣dθ∙Solvefor∫0π4ln∣cosθ∣dθ=∫π4π2ln∣sinθ∣dθ=∫π4π2(−ln2−∑∞k=1cos(2kθ)k)dθ=−π4ln2−∑∞k=11k∫π4π2cos(2kθ)dθ=−π4ln2−∑∞k=11k.sin(kθ)−sin(kπ2)2k=−π4ln2−12∑∞k=1sin(kπ2)k2=−π4ln2+12∑∞k=0sin(kπ+π2)(2k+1)2=−π4ln2+12∑∞k=0(−1)k(2k+1)2=−π4ln2+G2therefore:∫01x⋅arctan(x)1+x2dx=π8ln2−π4ln2+G2=−π8ln2+G2Weget:Ω=π216−2(−π8ln2+G2)SoΩ=π216+π4ln2−G Commented by HongKing last updated on 18/Nov/21 perfectmydearSerthankyousomuch Commented by chhaythean last updated on 19/Nov/21 thankyou,sir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-0-6-sin-x-sin-x-pi-3-sin-x-2pi-3-sin-3x-cos-3x-dx-Answer-pi-48-Next Next post: Question-28461 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.