Menu Close

Find-0-1-arctan-2-x-dx-




Question Number 159534 by HongKing last updated on 18/Nov/21
Find:  𝛀 =∫_( 0) ^( 1)  arctan^2  (x) dx
Find:Ω=10arctan2(x)dx
Answered by chhaythean last updated on 18/Nov/21
let { ((u=arctan^2 (x)⇒du=((2arctan(x))/(1+x^2 ))dx)),((dv=1dx⇒v=x)) :}  Ω=[x∙arctan^2 (x)]_0 ^1 −2∫_0 ^1 ((x∙arctan(x))/(1+x^2 ))dx     =(π^2 /(16))−2∫_0 ^1 ((x∙arctan(x))/(1+x^2 ))dx  •Solve for ∫_0 ^1 ((x∙arctan(x))/(1+x^2 ))dx  let x=tanθ⇒dx=sec^2 θdθ  =∫_0 ^(π/4) (θ∙tanθ)dθ  let { ((u=θ⇒du=dθ)),((dv=tanθdθ⇒v=−ln∣cosθ∣)) :}  =[−θ∙ln∣cosθ∣]_0 ^(π/4) +∫_0 ^(π/4) ln∣cosθ∣dθ  =[θ∙ln∣secθ∣]_0 ^(π/4) +∫_0 ^(π/4) ln∣cosθ∣dθ  =(π/8)ln2+∫_0 ^(π/4) ln∣cosθ∣dθ  •Solve for ∫_0 ^(π/4) ln∣cosθ∣dθ  =∫_(π/4) ^(π/2) ln∣sinθ∣dθ=∫_(π/4) ^(π/2) (−ln2−Σ_(k=1) ^∞ ((cos(2kθ))/k))dθ  =−(π/4)ln2−Σ_(k=1) ^∞ (1/k)∫_(π/4) ^(π/2) cos(2kθ)dθ  =−(π/4)ln2−Σ_(k=1) ^∞ (1/k).((sin(kθ)−sin(((kπ)/2)))/(2k))  =−(π/4)ln2−(1/2)Σ_(k=1) ^∞ ((sin(((kπ)/2)))/k^2 )  =−(π/4)ln2+(1/2)Σ_(k=0) ^∞ ((sin(kπ+(π/2)))/((2k+1)^2 ))=−(π/4)ln2+(1/2)Σ_(k=0) ^∞ (((−1)^k )/((2k+1)^2 ))  =−(π/4)ln2+(G/2)  therefore: ∫_0 ^1 ((x∙arctan(x))/(1+x^2 ))dx=(π/8)ln2−(π/4)ln2+(G/2)=−(π/8)ln2+(G/2)  We get:Ω=(π^2 /(16))−2(−(π/8)ln2+(G/2))  So  determinant (((Ω=(π^2 /(16))+(π/4)ln2−G)))
let{u=arctan2(x)du=2arctan(x)1+x2dxdv=1dxv=xΩ=[xarctan2(x)]01201xarctan(x)1+x2dx=π216201xarctan(x)1+x2dxSolvefor01xarctan(x)1+x2dxletx=tanθdx=sec2θdθ=0π4(θtanθ)dθlet{u=θdu=dθdv=tanθdθv=lncosθ=[θlncosθ]0π4+0π4lncosθdθ=[θlnsecθ]0π4+0π4lncosθdθ=π8ln2+0π4lncosθdθSolvefor0π4lncosθdθ=π4π2lnsinθdθ=π4π2(ln2k=1cos(2kθ)k)dθ=π4ln2k=11kπ4π2cos(2kθ)dθ=π4ln2k=11k.sin(kθ)sin(kπ2)2k=π4ln212k=1sin(kπ2)k2=π4ln2+12k=0sin(kπ+π2)(2k+1)2=π4ln2+12k=0(1)k(2k+1)2=π4ln2+G2therefore:01xarctan(x)1+x2dx=π8ln2π4ln2+G2=π8ln2+G2Weget:Ω=π2162(π8ln2+G2)SoΩ=π216+π4ln2G
Commented by HongKing last updated on 18/Nov/21
perfect my dear Ser thank you so much
perfectmydearSerthankyousomuch
Commented by chhaythean last updated on 19/Nov/21
thank you,sir
thankyou,sir

Leave a Reply

Your email address will not be published. Required fields are marked *