Menu Close

find-0-1-arctan-x-1-x-2-dx-




Question Number 48667 by maxmathsup by imad last updated on 26/Nov/18
find ∫_0 ^1   ((arctan(x))/( (√(1+x^2 )))) dx .
find01arctan(x)1+x2dx.
Commented by Abdo msup. last updated on 02/Dec/18
changement x=tant give  I =∫_0 ^(π/4)   (t/( (√(1+tan^2 t)))) (1+tan^2 t)dt =∫_0 ^(π/4)  t (dt/(cost))  =∫_0 ^(π/4)    (t/(cost)) dt =_(tan((t/2))=u)   ∫_0 ^((√2)−1)     ((2arctanu)/((1−u^2 )/(1+u^2 ))) ((2du)/(1+u^2 ))  =4 ∫_0 ^((√2)−1)    ((arctan(u))/(1−u^2 )) du =4 ∫_0 ^((√2)−1) arctan(u)(Σ_(n=0) ^∞  u^(2n) )du  =4 Σ_(n=0) ^∞   ∫_0 ^((√2)−1)  u^(2n)  arctan u du =4 Σ_(n=0) ^∞  A_n    by parts  A_n =∫_0 ^((√2)−1)  u^(2n)  arctan(u)du =[(1/(2n+1))u^(2n+1)  arctanu]_0 ^((√2) −1)   +∫_0 ^((√2)−1)   (1/(2n+1)) u^(2n+1)  (du/(1+u^2 ))  =(1/(2n+1))((√2)−1)^(2n+1)  arctan((√2)−1) +(1/(2n+1))∫_0 ^((√2)−1)   (u^(2n+1) /(1+u^2 ))du  =((π((√2)−1)^(2n+1) )/(8(2n+1))) +(1/(2n+1)) ∫_0 ^((√2)−1)   (u^(2n+1) /(1+u^2 )) du but  ∫_0 ^((√2)−1)    (u^(2n+1) /(1+u^2 )) du  =_(tanθ=u)      ∫_0 ^(π/8)    ((tan^(2n+1) θ)/(1+tan^2 θ)) (1+tan^2 θ)dθ  = ∫_0 ^(π/8)  tan^(2n+1) θ dθ  ....be continued....
changementx=tantgiveI=0π4t1+tan2t(1+tan2t)dt=0π4tdtcost=0π4tcostdt=tan(t2)=u0212arctanu1u21+u22du1+u2=4021arctan(u)1u2du=4021arctan(u)(n=0u2n)du=4n=0021u2narctanudu=4n=0AnbypartsAn=021u2narctan(u)du=[12n+1u2n+1arctanu]021+02112n+1u2n+1du1+u2=12n+1(21)2n+1arctan(21)+12n+1021u2n+11+u2du=π(21)2n+18(2n+1)+12n+1021u2n+11+u2dubut021u2n+11+u2du=tanθ=u0π8tan2n+1θ1+tan2θ(1+tan2θ)dθ=0π8tan2n+1θdθ.becontinued.
Answered by Abdulhafeez Abu qatada last updated on 26/Nov/18

Leave a Reply

Your email address will not be published. Required fields are marked *