Question Number 49956 by maxmathsup by imad last updated on 12/Dec/18

Commented by Abdo msup. last updated on 13/Dec/18
![we have cos(n arcosx) +i sin(narcosx) =(cos(arcosx )+isin(arcosx))^n =(x +i (√(1−x^2 )))^n and ∫_0 ^1 cos(narcosx)dx =Re( ∫_0 ^1 (x+i(√(1−x^2 )))^n dx) but (x+i(√(1−x^2 )))^n =Σ_(k=0) ^n C_n ^k (i(√(1−x^2 )))^k x^(n−k) =Σ_(k=0) ^n i^k C_n ^k (1−x^2 )^(k/2) x^(n−k) =Σ_(p=0) ^([(n/2)]) (−1)^p C_n ^(2p) (1−x^2 )^p x^(n−2p) +Σ_(p=0) ^([((n−1)/2)]) i(−1)^p C_n ^(2p+1) (1−x^2 )^((2p+1)/2) x^(n−2p−1) ⇒ ∫_0 ^1 cos(narcosx)dx =(∫_0 ^1 Σ_(p=0) ^([(n/2)]) (−1)^p C_n ^(2p) (1−x^2 )^p x^(n−2p) dx) =Σ_(p=0) ^([(n/2)]) (−1)^p C_n ^(2p) ∫_0 ^1 (1−x^2 )^p x^(n−2p) dx changement x =sin t give ∫_0 ^1 (1−x^2 )^p x^(n−2p) dx =∫_0 ^(π/2) cos^(2p) t sin^(n−2p) t cost dt =∫_0 ^(π/2) cos^(2p+1) t sin^(n−2p) t dt ...be continued...](https://www.tinkutara.com/question/Q50098.png)
Answered by Smail last updated on 13/Dec/18
![t=arcos(x)⇒dt=((−dx)/( (√(1−x^2 ))))=((−dx)/( (√(1−cos^2 t)))) dx=−sin(t)dt A=−∫_(π/2) ^0 sin(t)cos(nt)dt =∫_0 ^(π/2) sin(t)cos(nt)dt by parts u=cos(nt)⇒u′=−nsin(nt) v′=sin(t)⇒v=−cos(t) A=−[cos(t)cos(nt)]_0 ^(π/2) −n∫_0 ^(π/2) sin(nt)cos(t)dt by parts u=sin(nt)⇒u′=ncos(nt) v′=cos(t)⇒v=sin(t) A=1−n[sin(t)sin(nt)]_0 ^(π/2) +n^2 ∫_0 ^(π/2) sin(t)cos(nt)dt A=1−nsin(((nπ)/2))+n^2 A A(1−n^2 )=1−nsin(((nπ)/2)) A=((nsin(((nπ)/2))−1)/(n^2 −1))](https://www.tinkutara.com/question/Q50069.png)
Commented by Abdo msup. last updated on 13/Dec/18

Commented by Smail last updated on 14/Dec/18
