Menu Close

find-0-1-cos-n-arcosx-dx-with-n-integr-natural-




Question Number 49956 by maxmathsup by imad last updated on 12/Dec/18
find ∫_0 ^1  cos(n arcosx)dx  with n integr natural.
find01cos(narcosx)dxwithnintegrnatural.
Commented by Abdo msup. last updated on 13/Dec/18
we have cos(n arcosx) +i sin(narcosx)  =(cos(arcosx )+isin(arcosx))^n   =(x +i (√(1−x^2 )))^n  and ∫_0 ^1 cos(narcosx)dx  =Re( ∫_0 ^1  (x+i(√(1−x^2 )))^n  dx) but  (x+i(√(1−x^2 )))^n  =Σ_(k=0) ^n   C_n ^k  (i(√(1−x^2 )))^k  x^(n−k)   =Σ_(k=0) ^n   i^k  C_n ^k   (1−x^2 )^(k/2)  x^(n−k)   =Σ_(p=0) ^([(n/2)])   (−1)^p  C_n ^(2p) (1−x^2 )^p   x^(n−2p)   +Σ_(p=0) ^([((n−1)/2)])   i(−1)^p  C_n ^(2p+1)  (1−x^2 )^((2p+1)/2)   x^(n−2p−1)  ⇒  ∫_0 ^1  cos(narcosx)dx =(∫_0 ^1  Σ_(p=0) ^([(n/2)]) (−1)^p  C_n ^(2p)  (1−x^2 )^p  x^(n−2p) dx)  =Σ_(p=0) ^([(n/2)])   (−1)^p  C_n ^(2p)   ∫_0 ^1  (1−x^2 )^p  x^(n−2p)  dx  changement  x =sin t give   ∫_0 ^1  (1−x^2 )^p  x^(n−2p)  dx =∫_0 ^(π/2)  cos^(2p) t sin^(n−2p) t  cost dt   =∫_0 ^(π/2)   cos^(2p+1) t sin^(n−2p) t dt  ...be continued...
wehavecos(narcosx)+isin(narcosx)=(cos(arcosx)+isin(arcosx))n=(x+i1x2)nand01cos(narcosx)dx=Re(01(x+i1x2)ndx)but(x+i1x2)n=k=0nCnk(i1x2)kxnk=k=0nikCnk(1x2)k2xnk=p=0[n2](1)pCn2p(1x2)pxn2p+p=0[n12]i(1)pCn2p+1(1x2)2p+12xn2p101cos(narcosx)dx=(01p=0[n2](1)pCn2p(1x2)pxn2pdx)=p=0[n2](1)pCn2p01(1x2)pxn2pdxchangementx=sintgive01(1x2)pxn2pdx=0π2cos2ptsinn2ptcostdt=0π2cos2p+1tsinn2ptdtbecontinued
Answered by Smail last updated on 13/Dec/18
t=arcos(x)⇒dt=((−dx)/( (√(1−x^2 ))))=((−dx)/( (√(1−cos^2 t))))  dx=−sin(t)dt  A=−∫_(π/2) ^0 sin(t)cos(nt)dt  =∫_0 ^(π/2) sin(t)cos(nt)dt  by parts   u=cos(nt)⇒u′=−nsin(nt)  v′=sin(t)⇒v=−cos(t)  A=−[cos(t)cos(nt)]_0 ^(π/2) −n∫_0 ^(π/2) sin(nt)cos(t)dt  by parts  u=sin(nt)⇒u′=ncos(nt)  v′=cos(t)⇒v=sin(t)  A=1−n[sin(t)sin(nt)]_0 ^(π/2) +n^2 ∫_0 ^(π/2) sin(t)cos(nt)dt  A=1−nsin(((nπ)/2))+n^2 A  A(1−n^2 )=1−nsin(((nπ)/2))  A=((nsin(((nπ)/2))−1)/(n^2 −1))
t=arcos(x)dt=dx1x2=dx1cos2tdx=sin(t)dtA=π/20sin(t)cos(nt)dt=0π/2sin(t)cos(nt)dtbypartsu=cos(nt)u=nsin(nt)v=sin(t)v=cos(t)A=[cos(t)cos(nt)]0π/2n0π/2sin(nt)cos(t)dtbypartsu=sin(nt)u=ncos(nt)v=cos(t)v=sin(t)A=1n[sin(t)sin(nt)]0π/2+n20π/2sin(t)cos(nt)dtA=1nsin(nπ2)+n2AA(1n2)=1nsin(nπ2)A=nsin(nπ2)1n21
Commented by Abdo msup. last updated on 13/Dec/18
thanks sir Smail..
thankssirSmail..
Commented by Smail last updated on 14/Dec/18
you are quite welcome
youarequitewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *