Menu Close

find-0-1-cos-x-x-2-dx-with-gt-0-




Question Number 32994 by abdo imad last updated on 09/Apr/18
find  ∫_0 ^∞  ((1−cos(λx))/x^2 ) dx with λ>0 .
find01cos(λx)x2dxwithλ>0.
Commented by abdo imad last updated on 15/Apr/18
changement  λx =u give  I = ∫_0 ^∞    ((1−cosu)/(((u/λ))^2 )) (du/λ)  =λ ∫_0 ^∞   ((1−cosu)/u^2 ) du but  ∫_0 ^∞   ((1−cosu)/u^2 ) du  = 2 ∫_0 ^∞     ((sin^2 ((u/2)))/u^2 )du  =_((u/2)=t)    2 ∫_0 ^∞    ((sin^2 t)/(4t^2 )) 2dt  =∫_0 ^∞    ((sin^2 t)/t^2 )dt   (by parts)  = [−(1/t) sin^2 t]_0 ^(+∞)    −∫_0 ^∞ −(1/t) 2sint cost dt  = ∫_0 ^∞     ((sin(2t))/t) dt = _(2t=x)    ∫_0 ^∞    ((sin(x))/(x/2)) (dx/2) = ∫_0 ^(+∞)  ((sinx)/x)dx  =(π/2)  ⇒  I  = ((λπ)/2) .
changementλx=ugiveI=01cosu(uλ)2duλ=λ01cosuu2dubut01cosuu2du=20sin2(u2)u2du=u2=t20sin2t4t22dt=0sin2tt2dt(byparts)=[1tsin2t]0+01t2sintcostdt=0sin(2t)tdt=2t=x0sin(x)x2dx2=0+sinxxdx=π2I=λπ2.

Leave a Reply

Your email address will not be published. Required fields are marked *