Menu Close

find-0-1-dt-1-t-2-2-




Question Number 33175 by prof Abdo imad last updated on 11/Apr/18
find ∫_0 ^1   (dt/((1+t^2 )^2 ))
find01dt(1+t2)2
Commented by prof Abdo imad last updated on 13/Apr/18
let put I = ∫_0 ^1     (dt/((1+t^2 )^2 )) .changement t=tanθ give  I  =  ∫_0 ^(π/4)      ((1+tan^2 θ)/((1+tan^2 θ)^2 )) dθ = ∫_0 ^(π/4)     (dθ/(1+tan^2 θ))  = ∫_0 ^(π/4)   cos^2 θ dθ = (1/2) ∫_0 ^(π/4)  (1+cos(2θ))dθ  = (π/8)  + (1/4)[ sin(2θ)]_0 ^(π/4)   = (π/8) + (1/4) .
letputI=01dt(1+t2)2.changementt=tanθgiveI=0π41+tan2θ(1+tan2θ)2dθ=0π4dθ1+tan2θ=0π4cos2θdθ=120π4(1+cos(2θ))dθ=π8+14[sin(2θ)]0π4=π8+14.

Leave a Reply

Your email address will not be published. Required fields are marked *