Menu Close

find-0-1-dt-t-1-t-2-dt-




Question Number 42394 by abdo.msup.com last updated on 24/Aug/18
find ∫_0 ^1    (dt/(t+(√(1−t^2 )))) dt
find01dtt+1t2dt
Commented by maxmathsup by imad last updated on 25/Aug/18
changement   t = sinx give  I  =  ∫_0 ^(π/2)      ((cosxdx)/(sinx +cosx)) dx  = ∫_0 ^(π/2)       (dx/(tanx +1))  I =_(tanx =u)    ∫_0 ^(+∞)       (1/(1+u))  (du/(1+u^2 ))  = ∫_0 ^∞        (du/((u+1)(u^2  +1)))  let decompose  F(u) = (1/((u+1)(u^2 +1))) ⇒F(u) =(a/(u+1)) +((bu +c)/(u^2  +1))  a =lim_(u→−1) (u+1)F(u) =(1/2)  lim_(u→+∞) u F(u) =0 =a+b ⇒b =−(1/2) ⇒F(u) =(1/(2(u+1)))  +((−(1/2)u +c)/(u^2  +1))  F(0) =1 =(1/2)  +c ⇒c =(1/2) ⇒F(u) = (1/(2(u+1)))  −(1/2) ((u−1)/(u^2  +1)) ⇒  I = ∫_0 ^∞  F(u)du = (1/2) ∫_0 ^∞    (du/(u+1))  −(1/4) ∫_0 ^∞    ((2u−2)/(u^2  +1))du  =[ (1/2)ln∣u+1∣−(1/4)ln(u^2  +1)]_0 ^(+∞)   +(1/2) [arctanu]_0 ^(+∞)   =(1/2)[ln∣ ((u+1)/( (√(u^2  +1))))∣]_0 ^(+∞)   +(π/4)  =0+(π/4) =(π/4) .
changementt=sinxgiveI=0π2cosxdxsinx+cosxdx=0π2dxtanx+1I=tanx=u0+11+udu1+u2=0du(u+1)(u2+1)letdecomposeF(u)=1(u+1)(u2+1)F(u)=au+1+bu+cu2+1a=limu1(u+1)F(u)=12limu+uF(u)=0=a+bb=12F(u)=12(u+1)+12u+cu2+1F(0)=1=12+cc=12F(u)=12(u+1)12u1u2+1I=0F(u)du=120duu+11402u2u2+1du=[12lnu+114ln(u2+1)]0++12[arctanu]0+=12[lnu+1u2+1]0++π4=0+π4=π4.
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18
t=sinα  dt=cosαdα  ∫_0 ^(Π/2) ((cosα)/(cosα+sinα))dα  =(1/2)∫_0 ^(Π/2) ((cosα+sinα+cosα−sinα)/(cosα+sinα))dα  =(1/2)∫_0 ^(Π/2) dα+(1/2)∫_0 ^(Π/2) ((d(sinα+cosα))/(cosα+sinα))  =(1/2)((Π/2))+(1/2)∣ln(cosα+sinα)∣_0 ^(Π/2)   =(Π/4)+(1/2){ln(1)−ln1}  =(Π/4)
t=sinαdt=cosαdα0Π2cosαcosα+sinαdα=120Π2cosα+sinα+cosαsinαcosα+sinαdα=120Π2dα+120Π2d(sinα+cosα)cosα+sinα=12(Π2)+12ln(cosα+sinα)0Π2=Π4+12{ln(1)ln1}=Π4

Leave a Reply

Your email address will not be published. Required fields are marked *