Question Number 174117 by Mathspace last updated on 25/Jul/22
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{1}+{x}^{{n}} }\:{interms}\:{of} \\ $$$$\psi\:\left({digamma}\right) \\ $$
Answered by Mathspace last updated on 25/Jul/22
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}^{{n}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{p}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{p}} {x}^{{np}} {dx} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{p}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{np}} {dx} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{p}} }{{np}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}{nk}+\mathrm{1}}−\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right){n}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{2}{nk}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{nk}+{n}+\mathrm{1}}\right) \\ $$$$={n}\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{2}{nk}+\mathrm{1}\right)\left(\mathrm{2}{nk}+{n}+\mathrm{1}\right)} \\ $$$$=\frac{{n}}{\mathrm{4}{n}^{\mathrm{2}} }\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\left({k}+\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{n}}\left(\psi\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\right)×\frac{\mathrm{1}}{\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}}\left\{\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\right\} \\ $$
Commented by aleks041103 last updated on 25/Jul/22
$${Yes},\:{this}\:{is}\:{correct}!\:{I}\:{made}\:{an}\:{extremely}\: \\ $$$${big}\:{mistake}\:{of}\:{doing}\:{whatever}\:{I}\:{want}\:{with} \\ $$$${nonconverging}\:{integrals}… \\ $$
Commented by Mathspace last updated on 25/Jul/22
$${your}\:{method}\:{is}\:{correct}\:{by}\:{you}\:{hsve}\:{commited} \\ $$$${a}\:{error}\:{of}\:{calculus}\:{nevermind}\:{sir} \\ $$