Menu Close

find-0-1-dx-x-x-1-3-




Question Number 145183 by mathmax by abdo last updated on 03/Jul/21
find ∫_0 ^1  (dx/(((√x)+(√(x+1)))^3 ))
find01dx(x+x+1)3
Commented by justtry last updated on 03/Jul/21
Answered by mindispower last updated on 03/Jul/21
x=sh^2 (t)  ⇔∫((sh(2t)dt)/e^(3t) )  =(1/(2e^t ))−(e^(−5t) /2)  =−(e^(−t) /2)+(e^(−5t) /(10))+c,t=argsh((√x))
x=sh2(t)sh(2t)dte3t=12ete5t2=et2+e5t10+c,t=argsh(x)
Answered by mathmax by abdo last updated on 03/Jul/21
Ψ=∫_0 ^1  (dx/(((√x)+(√(x+1)))^3 ))  changement  x=sh^2 t give  sht=(√x) ⇒t=argsh((√x))=log((√x)+(√(1+x))) ⇒  Ψ=∫_0 ^(log(1+(√2)))   ((2sht cht)/((sht+cht)^3 )) dt =∫_0 ^(log(1+(√2)))  ((sh(2t))/e^(3t) )dt  =∫_0 ^(log(1+(√2)))  e^(−3t) .((e^(2t) −e^(−2t) )/2)dt =(1/2)∫_0 ^(log(1+(√2)))  (e^(−t)  −e^(−5t) )dt  =(1/2)[−e^(−t) +(1/5)e^(−5t) ]_0 ^(log(1+(√2)))   Ψ=(1/2)(−(1/(1+(√2)))+(1/(5(1+(√2))^5 )) +1−(1/5))
Ψ=01dx(x+x+1)3changementx=sh2tgivesht=xt=argsh(x)=log(x+1+x)Ψ=0log(1+2)2shtcht(sht+cht)3dt=0log(1+2)sh(2t)e3tdt=0log(1+2)e3t.e2te2t2dt=120log(1+2)(ete5t)dt=12[et+15e5t]0log(1+2)Ψ=12(11+2+15(1+2)5+115)

Leave a Reply

Your email address will not be published. Required fields are marked *