Menu Close

find-0-1-e-2x-ln-1-t-e-x-dx-with-0-lt-t-lt-1-




Question Number 28073 by abdo imad last updated on 20/Jan/18
find  ∫_0 ^1  e^(−2x) ln(1+t e^(−x) )dx   with  0<t<1  .
find01e2xln(1+tex)dxwith0<t<1.
Commented by abdo imad last updated on 26/Jan/18
let put  f(t) = ∫_0 ^1  e^(−2x) ln(1+t e^(−x) )dx  f^′ (t)=  ∫_0 ^1  e^(−2x)  (e^(−x) /(1+t e^(−x) ))dx = ∫_0 ^1  e^(−3x)  (Σ_(n=0) ^∝  (−1)^n  t^n  e^(−nx) )dx  = Σ_(n=0) ^∝   (−1)^n  t^n   ∫_0 ^1  e^(−(n+3)x) dx  = Σ_(n=0) ^∞  (((−1)^n t^n )/(−(n+3)))  [  e^(−(n+3)x) ]_0 ^1   =−Σ_(n=0) ^∞   (((−1)^n  t^n )/(n+3)) (e^(−(n+3))  −1)  = Σ_(n=0) ^(+∞)   (((−1)^n )/(n+3)) t^n   − Σ_(n=0) ^(+∞)    (((−1)^n t^n  e^(−(n+3)) )/(n+3))  ⇒ f(t) = ∫_0 ^t (....)du +λ  = Σ_(n=0) ^∝   (((−1)^n )/((n+1)(n+3))) t^(n+1)   −Σ_(n.0) ^∝  (((−1)^n t^(n+1)  e^(−(n+3)) )/((n+1)(n+3))) +λ  λ=f(0)=0  and  f(x)= (1/2) Σ_(n=0) ^∝  (−1)^n ( (1/(n+1)) −(1/(n+3)))t^(n+1)       − (e^(−2) /2)Σ_(n=0) ^∝   (−1)^n ( (1/(n+1)) − (1/(n+3)))(te^(−1) )^(n+1)   = (1/(2 ))Σ_(n=0) ^∝  (((−1)^n )/(n+1))t^(n+1)   −(1/2) Σ_(n=0) ^∝   (((−1)^n t^(n+1) )/(n+3))  −(e^(−2) /2) Σ_(n=0) ^∝  (((−1)^n (te^(−1) )^(n+1) )/(n+1))  +(e^(−2) /2) Σ_(n=0) ^∝  (((−1)^n (t e^(−1) )^(n+1) )/(n+3))  and all those sum are calculable ...be contiued.
letputf(t)=01e2xln(1+tex)dxf(t)=01e2xex1+texdx=01e3x(n=0(1)ntnenx)dx=n=0(1)ntn01e(n+3)xdx=n=0(1)ntn(n+3)[e(n+3)x]01=n=0(1)ntnn+3(e(n+3)1)=n=0+(1)nn+3tnn=0+(1)ntne(n+3)n+3f(t)=0t(.)du+λ=n=0(1)n(n+1)(n+3)tn+1n.0(1)ntn+1e(n+3)(n+1)(n+3)+λλ=f(0)=0andf(x)=12n=0(1)n(1n+11n+3)tn+1e22n=0(1)n(1n+11n+3)(te1)n+1=12n=0(1)nn+1tn+112n=0(1)ntn+1n+3e22n=0(1)n(te1)n+1n+1+e22n=0(1)n(te1)n+1n+3andallthosesumarecalculablebecontiued.

Leave a Reply

Your email address will not be published. Required fields are marked *