find-0-1-ln-2-x-1-x-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60586 by Mr X pcx last updated on 22/May/19 find∫01ln2(x)(1−x2)2dx Commented by maxmathsup by imad last updated on 23/May/19 letA=∫01ln2x(1−x2)2dxwehavefor∣x∣<1∑n=0∞xn=11−xand∑n=1∞nxn−1=1(1−x)2⇒∑n=1∞nx2n−2=1(1−x2)2⇒A=∫01(∑n=1∞nxn−2)ln2xdx=∑n=1∞n∫01xn−2ln2xdx=∑n=1∞nwnwn=∫01xn−2ln2xdxbypartsu′=xn−2andv=ln2x⇒wn=[1n−1xn−1ln2x]01−∫011n−1xn−12lnxxdx=−2n−1∫01xn−2ln(x)dxbypartsagainu′=xn−2andv=lnx⇒∫01xn−2ln(x)dx=[1n−1xn−1lnx]01−∫011n−1xn−1dxx=−1n−1∫01xn−2dx=−1n−1[1n−1xn−1]01=−1(n−1)2⇒wn=2(n−1)3A=∫01(1+∑n=2∞nxn−2)ln2xdx=∫01ln2xdx+∑n=2∞n∫01xn−2ln2xdx=∫01ln2xdx+∑n=2∞n2(n−1)3=∫01ln2xdx+2∑n=2∞n(n−1)3∑n=2∞n(n−1)3=∑n=1∞n+1n3=∑n=1∞1n2+∑n=1∞1n3=π26+ξ(3)∫01ln2xdx=ln(x)=−t∫+∞0t2(−e−t)dt=∫0∞t2e−tdt=[−t2e−t]0+∞−∫0+∞2t(−e−t)dt=2∫0∞te−tdt=2{[−te−t]0∞−∫0∞(−e−t)dt}=2∫0∞e−tdt=2[−e−t]0+∞=2⇒A=2+π23+2ξ(3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-126117Next Next post: x-0-pi-2-sinx-cosx-tg3x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.