Menu Close

find-0-1-ln-x-x-1-x-3-2-dx-




Question Number 50422 by Abdo msup. last updated on 16/Dec/18
find ∫_0 ^1   ((ln(x))/( (√x)(1−x)^(3/2) ))dx
find01ln(x)x(1x)32dx
Commented by Abdo msup. last updated on 23/Dec/18
changement x =sin^2 θ give  ∫_0 ^1   ((ln(x))/( (√x)(1−x)^(3/2) ))dx =∫_0 ^(π/2)    ((2ln(sinθ))/(sinθ(cos^2 θ)^(3/2) )) 2sinθ cosθ dθ  =4∫_0 ^(π/2)     ((ln(sinθ))/(cos^2 θ)) dθ  by psrts u^′ =(1/(cos^2 θ)) and v=ln(sinθ)  =4 {  [tanθ ln(sinθ)]_0 ^(π/2)  −∫_0 ^(π/2)  tanθ  ((cosθ)/(sinθ))dθ}  =−4 ∫_0 ^(π/2) dθ =−2π .rest to prove that  lim_(θ→0) tanθ ln(sinθ)=0 and lim_(θ→(π/2))  tanθ ln(sinθ)=0  for x∈v(0)  tanθ∼ θ   ,ln(sinθ)∼ln(θ) ⇒  tanθ ln(sinθ)∼θ lnθ →0 (θ→0)   ch. θ =(π/2)−t give tanθ ln(sinθ) =tan((π/2)−t)ln(cost)  =((ln(cost))/(tan(t))) but  cost ∼ 1−(t^2 /2)  and ln(cost)∼−(t^2 /2)  tan(t)∼ t ⇒((ln(cost))/(tan(t))) ∼ −(t/2) →0(t→0) ⇒the result  is proved.
changementx=sin2θgive01ln(x)x(1x)32dx=0π22ln(sinθ)sinθ(cos2θ)322sinθcosθdθ=40π2ln(sinθ)cos2θdθbypsrtsu=1cos2θandv=ln(sinθ)=4{[tanθln(sinθ)]0π20π2tanθcosθsinθdθ}=40π2dθ=2π.resttoprovethatlimθ0tanθln(sinθ)=0andlimθπ2tanθln(sinθ)=0forxv(0)tanθθ,ln(sinθ)ln(θ)tanθln(sinθ)θlnθ0(θ0)ch.θ=π2tgivetanθln(sinθ)=tan(π2t)ln(cost)=ln(cost)tan(t)butcost1t22andln(cost)t22tan(t)tln(cost)tan(t)t20(t0)theresultisproved.
Answered by Smail last updated on 27/Dec/18
by parts  u=lnx⇒u′=(1/x)  v′=(1/( (√x)(1−x)^(3/2) ))⇒v=((2(√x))/( (√(1−x))))  I=∫_0 ^1 ((lnx)/( (√x)(1−x)^(3/2) ))dx=2[(((√x)lnx)/( (√(1−x))))]_0 ^1 −2∫_0 ^1 (dx/( (√x)(√(1−x))))  let t^2 =x⇒2tdt=dx  I=0−4∫_0 ^1 ((tdt)/(t(√(1−t^2 ))))  =−4[sin^(−1) t]_0 ^1 =−4((π/2)+2kπ−kπ)  =−4((π/2)+kπ)
bypartsu=lnxu=1xv=1x(1x)3/2v=2x1xI=01lnxx(1x)3/2dx=2[xlnx1x]01201dxx1xlett2=x2tdt=dxI=0401tdtt1t2=4[sin1t]01=4(π2+2kπkπ)=4(π2+kπ)

Leave a Reply

Your email address will not be published. Required fields are marked *