Question Number 88033 by M±th+et£s last updated on 07/Apr/20
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$
Commented by mathmax by abdo last updated on 08/Apr/20
$${approximate}\:{value}\:{we}\:{have}\:{sinx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}{x}^{\mathrm{2}{n}+\mathrm{1}} \:\:\Rightarrow \\ $$$${sinx}\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:+{o}\left({x}^{\mathrm{3}} \right)\:\Rightarrow\:\forall\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\:\:\:\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant{sinx}\:\leqslant{x}\:\Rightarrow \\ $$$$\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\leqslant\frac{{sinx}}{{x}}\leqslant\mathrm{1}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\right){dx}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sinx}}{{x}}{dx}\:\leqslant\mathrm{1} \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\right){dx}\:=\left[{x}−\frac{\mathrm{1}}{\mathrm{18}}{x}^{\mathrm{3}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{18}}\:=\frac{\mathrm{17}}{\mathrm{18}}\:\Rightarrow \\ $$$$\frac{\mathrm{17}}{\mathrm{18}}\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sinx}}{{x}}{dx}\:\leqslant\mathrm{1}\:\:{we}\:{can}\:{take}\:{v}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{17}}{\mathrm{46}}\:\:{as}\:{a}\:{apprimate} \\ $$$${value}\:{for}\:{this}\:{integral} \\ $$$${I}\:\sim\mathrm{0},\mathrm{5}\:+\mathrm{0},\mathrm{369}\:\Rightarrow\:{I}\:\sim\mathrm{0},\mathrm{869} \\ $$
Commented by mathmax by abdo last updated on 08/Apr/20
$${forgive}\:{error}\:{of}\:{typo}\:{v}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{17}}{\mathrm{36}}\:\:\Rightarrow\:{I}\:\sim\mathrm{0},\mathrm{5}\:+\mathrm{0},\mathrm{472}\:\Rightarrow \\ $$$${I}\:\sim\mathrm{0},\mathrm{972} \\ $$
Commented by M±th+et£s last updated on 08/Apr/20
$${thank}\:{you}\:{sir} \\ $$
Commented by abdomathmax last updated on 08/Apr/20
$${you}\:{are}\:{welcome} \\ $$