Menu Close

find-0-1-sinx-1-x-2-dx-




Question Number 61326 by maxmathsup by imad last updated on 01/Jun/19
find  ∫_0 ^1    ((sinx)/(1+x^2 ))dx
find01sinx1+x2dx
Commented by perlman last updated on 01/Jun/19
exacte value !
exactevalue!
Commented by maxmathsup by imad last updated on 01/Jun/19
try sir to find it ...
trysirtofindit
Commented by abdo mathsup 649 cc last updated on 01/Jun/19
another way  we have  x−(x^3 /6) ≤sinx ≤x ⇒  (x/(1+x^2 )) −(x^3 /(6(1+x^2 ))) ≤ ((sinx)/(1+x^2 )) ≤ (x/(1+x^2 )) ⇒  ∫_0 ^1   (x/(1+x^2 ))dx −(1/6) ∫_0 ^1   (x^3 /(1+x^2 ))dx ≤ ∫_0 ^1  ((sinx)/(1+x^2 ))dx≤∫_0 ^1   (x/(1+x^2 ))dx   ∫_0 ^1  (x/(1+x^2 ))dx =[(1/2)ln(1+x^2 )]_0 ^1  =((ln(2))/2)  ∫_0 ^1   (x^3 /(x^2  +1)) dx =∫_0 ^1  ((x(x^2 +1)−x)/(x^2  +1))dx  =∫_0 ^1 xdx−∫_0 ^1  ((xdx)/(x^2  +1)) =[(x^2 /2)]_0 ^1  −((ln(2))/2) =(1/2) −((ln(2))/2) ⇒  ((ln(2))/2) −(1/(12)) +((ln(2))/(12)) ≤ ∫_0 ^1   ((sinxdx)/(1+x^2 )) ≤ ((ln(2))/2) ⇒  ((7ln(2)−1)/(12)) ≤ ∫_0 ^1   ((sinx)/(1+x^2 ))dx ≤ ((ln(2))/2)  so we can take  v_0 =((7ln(2)−1)/(24)) +((ln(2{)/4) =((13ln(2)−1)/(24)) as approximst  value for this integral .
anotherwaywehavexx36sinxxx1+x2x36(1+x2)sinx1+x2x1+x201x1+x2dx1601x31+x2dx01sinx1+x2dx01x1+x2dx01x1+x2dx=[12ln(1+x2)]01=ln(2)201x3x2+1dx=01x(x2+1)xx2+1dx=01xdx01xdxx2+1=[x22]01ln(2)2=12ln(2)2ln(2)2112+ln(2)1201sinxdx1+x2ln(2)27ln(2)11201sinx1+x2dxln(2)2sowecantakev0=7ln(2)124+ln(2{4=13ln(2)124asapproximstvalueforthisintegral.
Commented by abdo mathsup 649 cc last updated on 01/Jun/19
let I =∫_0 ^1   ((sinx)/(1+x^2 )) dx   we have sinx =Σ_(n=0) ^∞  (((−1)^n x^(2n+1) )/((2n+1)!)) ⇒  I =∫_0 ^1   (Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) x^(2n+1)  (1/(1+x^2 )))dx  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) ∫_0 ^1    (x^(2n+1) /(1+x^2 ))dx let w_n =∫_0 ^1  (x^(2n+1) /(1+x^2 ))dx  ⇒w_n =_(x=tanθ)      ∫_0 ^(π/4)   ((tan^(2n+1) θ(1+tan^2 θ)dθ)/(1+tan^2 θ))  =∫_0 ^(π/4)  tan^(2n+1) θ dθ  (the value of this integral is  known) ⇒I = Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) w_n
letI=01sinx1+x2dxwehavesinx=n=0(1)nx2n+1(2n+1)!I=01(n=0(1)n(2n+1)!x2n+111+x2)dx=n=0(1)n(2n+1)!01x2n+11+x2dxletwn=01x2n+11+x2dxwn=x=tanθ0π4tan2n+1θ(1+tan2θ)dθ1+tan2θ=0π4tan2n+1θdθ(thevalueofthisintegralisknown)I=n=0(1)n(2n+1)!wn

Leave a Reply

Your email address will not be published. Required fields are marked *