Question Number 61326 by maxmathsup by imad last updated on 01/Jun/19

Commented by perlman last updated on 01/Jun/19

Commented by maxmathsup by imad last updated on 01/Jun/19

Commented by abdo mathsup 649 cc last updated on 01/Jun/19
![another way we have x−(x^3 /6) ≤sinx ≤x ⇒ (x/(1+x^2 )) −(x^3 /(6(1+x^2 ))) ≤ ((sinx)/(1+x^2 )) ≤ (x/(1+x^2 )) ⇒ ∫_0 ^1 (x/(1+x^2 ))dx −(1/6) ∫_0 ^1 (x^3 /(1+x^2 ))dx ≤ ∫_0 ^1 ((sinx)/(1+x^2 ))dx≤∫_0 ^1 (x/(1+x^2 ))dx ∫_0 ^1 (x/(1+x^2 ))dx =[(1/2)ln(1+x^2 )]_0 ^1 =((ln(2))/2) ∫_0 ^1 (x^3 /(x^2 +1)) dx =∫_0 ^1 ((x(x^2 +1)−x)/(x^2 +1))dx =∫_0 ^1 xdx−∫_0 ^1 ((xdx)/(x^2 +1)) =[(x^2 /2)]_0 ^1 −((ln(2))/2) =(1/2) −((ln(2))/2) ⇒ ((ln(2))/2) −(1/(12)) +((ln(2))/(12)) ≤ ∫_0 ^1 ((sinxdx)/(1+x^2 )) ≤ ((ln(2))/2) ⇒ ((7ln(2)−1)/(12)) ≤ ∫_0 ^1 ((sinx)/(1+x^2 ))dx ≤ ((ln(2))/2) so we can take v_0 =((7ln(2)−1)/(24)) +((ln(2{)/4) =((13ln(2)−1)/(24)) as approximst value for this integral .](https://www.tinkutara.com/question/Q61366.png)
Commented by abdo mathsup 649 cc last updated on 01/Jun/19
