Question Number 172564 by Mathspace last updated on 28/Jun/22
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}\sqrt{\mathrm{1}−\sqrt{{x}}}{lnx}\:{dx} \\ $$
Answered by Ar Brandon last updated on 28/Jun/22
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}\sqrt{\mathrm{1}−\sqrt{{x}}}\mathrm{ln}{xdx},\:{x}={t}^{\mathrm{2}} \\ $$$$\:\:\:=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}} \sqrt{\mathrm{1}−{t}}\mathrm{ln}{tdt}=\mathrm{4}\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{3}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\alpha−\mathrm{1}} \sqrt{\mathrm{1}−{t}}{dt} \\ $$$$\:\:\:=\mathrm{4}\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{3}} \beta\left(\alpha,\:\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{4}\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{3}} \frac{\Gamma\left(\alpha\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$\:\:\:=\mathrm{2}\sqrt{\pi}\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{3}} \frac{\Gamma\left(\alpha\right)}{\Gamma\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}=\mathrm{2}\sqrt{\pi}\left(\frac{\Gamma'\left(\alpha\right)}{\Gamma\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}−\frac{\Gamma\left(\alpha\right)\Gamma'\left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\alpha+\frac{\mathrm{3}}{\mathrm{2}}\right)}\right)_{\alpha=\mathrm{3}} \\ $$$$\:\:\:=\mathrm{2}\sqrt{\pi}\left(\frac{\Gamma\left(\mathrm{3}\right)\psi\left(\mathrm{3}\right)}{\Gamma\left(\frac{\mathrm{9}}{\mathrm{2}}\right)}−\frac{\Gamma\left(\mathrm{3}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{2}}\right)\psi\left(\frac{\mathrm{9}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{9}}{\mathrm{2}}\right)}\right) \\ $$$$\:\:\:=\mathrm{2}\sqrt{\pi}\left(\frac{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}−\gamma\right)}{\frac{\mathrm{7}}{\mathrm{2}}\centerdot\frac{\mathrm{5}}{\mathrm{2}}\centerdot\frac{\mathrm{3}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot\sqrt{\pi}}−\frac{\mathrm{2}\left(\frac{\mathrm{2}}{\mathrm{7}}+\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{2}−\gamma−\mathrm{2ln2}\right)}{\frac{\mathrm{7}}{\mathrm{2}}\centerdot\frac{\mathrm{5}}{\mathrm{2}}\centerdot\frac{\mathrm{3}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot\sqrt{\pi}}\right) \\ $$$$\:\:\:=\frac{\mathrm{32}}{\mathrm{105}}\left(\mathrm{3}−\mathrm{2}\gamma−\frac{\mathrm{704}}{\mathrm{105}}+\mathrm{2}\gamma+\mathrm{4ln2}\right)=\frac{\mathrm{32}}{\mathrm{105}}\left(\mathrm{4ln2}−\frac{\mathrm{389}}{\mathrm{105}}\right) \\ $$
Answered by Mathspace last updated on 29/Jun/22
$${changement}\:\sqrt{{x}}={t}\:{give}\:{x}={t}^{\mathrm{2}} \\ $$$${and}\:{I}=\int_{\mathrm{0}} ^{\mathrm{1}} {t}\sqrt{\mathrm{1}−{t}}\left(\mathrm{2}{lnt}\right)\mathrm{2}{t}\:{dt} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {lnt}\:{dt} \\ $$$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}+\mathrm{2}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dt} \\ $$$${we}\:{have}\:{f}^{'} \left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}+\mathrm{2}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {lnt}\:{dt} \\ $$$$\Rightarrow{f}^{'} \left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {lnt}\:{dt}\:\Rightarrow \\ $$$${I}=\mathrm{4}{f}^{'} \left(\mathrm{0}\right) \\ $$$${we}\:{have}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}+\mathrm{3}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} {dt} \\ $$$$={B}\left({a}+\mathrm{3},\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\Gamma\left({a}+\mathrm{3}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left({a}+\mathrm{3}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\Gamma\left({a}+\mathrm{3}\right)}{\Gamma\left({a}+\frac{\mathrm{9}}{\mathrm{2}}\right)}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)=\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\Gamma^{'} \left({a}+\mathrm{3}\right)\Gamma\left({a}+\frac{\mathrm{9}}{\mathrm{2}}\right)−\Gamma\left({a}+\mathrm{3}\right)\Gamma^{'} \left({a}+\frac{\mathrm{9}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left({a}+\frac{\mathrm{9}}{\mathrm{2}}\right)} \\ $$$${I}=\mathrm{4}{f}^{'} \left(\mathrm{0}\right)=\mathrm{2}\sqrt{\pi}×\frac{\Gamma^{'} \left(\mathrm{3}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{2}}\right)−\Gamma\left(\mathrm{3}\right)\Gamma^{'} \left(\frac{\mathrm{9}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{9}}{\mathrm{2}}\right)} \\ $$$${after}\:{we}\:{use}\:\psi\left({x}\right)=\frac{\Gamma^{'} \left({x}\right)}{\Gamma\left({x}\right)}\:\Rightarrow \\ $$$$\Gamma^{'} \left(\mathrm{3}\right)=\Gamma\left(\mathrm{3}\right).\psi\left(\mathrm{3}\right) \\ $$$$\Gamma\left(\mathrm{3}\right)=\mathrm{2}!=\mathrm{2} \\ $$$$\psi\left({s}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{s}−\mathrm{1}} }{\mathrm{1}−{x}}{dx}\:\Rightarrow \\ $$$$\psi\left(\mathrm{3}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}−{x}}{dx} \\ $$$$=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}\right){dx}=−\gamma+\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Gamma^{'} \left(\frac{\mathrm{9}}{\mathrm{2}}\right)=\Gamma\left(\frac{\mathrm{9}}{\mathrm{2}}\right)\psi\left(\frac{\mathrm{9}}{\mathrm{2}}\right) \\ $$$$\psi\left(\frac{\mathrm{9}}{\mathrm{2}}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{x}^{\frac{\mathrm{7}}{\mathrm{2}}} }{\mathrm{1}−{x}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{x}^{\frac{\mathrm{7}}{\mathrm{2}}} }{\mathrm{1}−{x}}{dx}\:\: \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{x}^{\mathrm{3}} \sqrt{{x}}}{\mathrm{1}−{x}}{dx}\:\:\left({x}={t}^{\mathrm{2}} \right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{t}^{\mathrm{7}} }{\mathrm{1}−{t}^{\mathrm{2}} }\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} +{t}^{\mathrm{3}} +{t}^{\mathrm{4}} +{t}^{\mathrm{5}} +{t}^{\mathrm{6}} \right)}{\mathrm{1}+{t}}{dt}=… \\ $$
Commented by Ar Brandon last updated on 29/Jun/22
$$\psi\left(\mathrm{1}+{s}\right)=\frac{\mathrm{1}}{{s}}+\psi\left({s}\right) \\ $$$$\psi\left(\mathrm{3}\right)=\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}+\psi\left(\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{2}}−\gamma \\ $$$$\psi\left(\frac{\mathrm{9}}{\mathrm{2}}\right)=\frac{\mathrm{2}}{\mathrm{7}}+\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{2}+\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{352}}{\mathrm{105}}−\gamma−\mathrm{2ln2} \\ $$