Menu Close

find-0-1-x-2-1-1-x-1-x-dx-




Question Number 42803 by maxmathsup by imad last updated on 02/Sep/18
find  ∫_0 ^1  (x^2  +1)(√((1−x)/(1+x)))dx
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx}\: \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18
∫_0 ^1 ((x^2 (√(1−x)))/( (√(1+x))))dx+∫_0 ^1 (√(((1−x)/(1+x)) )) dx  ∫_0 ^1 ((x^2 (1−x))/( (√(1−x^2 ))))dx+∫_0 ^1 ((1−x)/( (√(1−x^2 ))))dx  ∫_0 ^1 (x^2 /( (√(1−x^2 ))))dx−∫_0 ^1 ((x.x^2 )/( (√(1−x^2 ))))dx+∫_0 ^1 (dx/( (√(1−x^2 ))))−∫_0 ^1 ((xdx)/( (√(1−x^2 ))))  =−∫_0 ^1 ((1−x^2 −1)/( (√(1−x^2 ))))dx−∫_0 ^1 ((x.x^2 )/( (√(1−x^2 ))))dx+∫_0 ^1 (dx/( (√(1−x^2 ))))−∫_0 ^1 ((xdx)/( (√(1−x^2 ))))  =∫_0 ^1 (dx/( (√(1−x^2 ))))−∫_0 ^1 (√(1−x^2 )) dx−∫_0 ^1 ((x.x^2 )/( (√(1−x^2 ))))dx+∫_0 ^1 (dx/( (√(1−x^2 ))))−∫_0 ^1 ((xdx)/( (√(1−x^2 ))))  t^2 =1−x^2     2tdt=−2xdx  −tdt=xdx  2∫_0 ^1 (dx/( (√(1−x^2 ))))−∫_0 ^1 (√(1−x^2 )) dx+∫_1 ^0 ((1−t^2 )/t)×tdt+∫_1 ^0 ((tdt)/t)  now use formula
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} \sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}+{x}}}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\:}\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}.{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xdx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}.{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xdx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}.{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xdx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${t}^{\mathrm{2}} =\mathrm{1}−{x}^{\mathrm{2}} \:\:\:\:\mathrm{2}{tdt}=−\mathrm{2}{xdx} \\ $$$$−{tdt}={xdx} \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}+\int_{\mathrm{1}} ^{\mathrm{0}} \frac{\mathrm{1}−{t}^{\mathrm{2}} }{{t}}×{tdt}+\int_{\mathrm{1}} ^{\mathrm{0}} \frac{{tdt}}{{t}} \\ $$$${now}\:{use}\:{formula} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *