Menu Close

find-0-1-x-2-x-4-1-dx-




Question Number 130725 by mathmax by abdo last updated on 28/Jan/21
find ∫_0 ^1  (x^2 /( (√(x^4 +1))))dx
find01x2x4+1dx
Answered by Dwaipayan Shikari last updated on 28/Jan/21
(1/( (√(1+x))))=Σ_(n=0) ^∞ ((((1/2))_n )/(n!))(−1)^n x^n   (x^2 /( (√(1+x^4 ))))=Σ_(n=0) ^∞ ((((1/2))_n )/(n!))(−1)^n x^(4n+2)   ∫_0 ^1 (x^2 /( (√(1+x^4 ))))=Σ_(n=0) ^∞ ((((1/2))_n )/(n!(4n+3)))(−1)^n =(1/3)Σ_(n=0) ^∞ ((((1/2))_n ((3/4))_n )/(((7/4))_n n!))(−1)^n   As ,(1/(4n+3))=(1/4)((1/(n+(3/4))))=(1/4)(((Γ(n+(3/4)))/(Γ(n+(7/4)))))=(4/3).(1/4).((((3/4))_n )/(((7/4))_n ))  =(1/3) _2 F_1 ((1/2),(3/4);(7/4);−1)
11+x=n=0(12)nn!(1)nxnx21+x4=n=0(12)nn!(1)nx4n+201x21+x4=n=0(12)nn!(4n+3)(1)n=13n=0(12)n(34)n(74)nn!(1)nAs,14n+3=14(1n+34)=14(Γ(n+34)Γ(n+74))=43.14.(34)n(74)n=132F1(12,34;74;1)
Commented by mathmax by abdo last updated on 28/Jan/21
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *