Menu Close

find-0-1-x-x-dx-study-first-the-convergence-




Question Number 64528 by mathmax by abdo last updated on 19/Jul/19
find  ∫_0 ^1  x^(−x) dx   study first the convergence.
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\:\:{study}\:{first}\:{the}\:{convergence}. \\ $$
Commented by mathmax by abdo last updated on 19/Jul/19
we have  x^(−x)  =e^(−xln(x))  let  A =∫_0 ^1  x^(−x) dx ⇒A =∫_0 ^1  e^(−xlnx) dx  we have lim_(x→0^+ )    xln(x) =0 ⇒lim_(x→0^ )   e^(−xlnx)  =1  so  the function x→e^(−xlnx)  is integrable on [0,1]  we have A =∫_0 ^1 Σ_(n=0) ^∞  (((−xlnx)^n )/(n!))dx =Σ_(n=0) ^∞ (((−1)^n )/(n!)) ∫_0 ^1 x^n (lnx)^n  dx  =Σ_(n=0) ^∞  (((−1)^n )/(n!))w_n   w_n =∫_0 ^1  x^n (lnx)^n dx =_(lnx =−t)    ∫_(+∞) ^0  e^(−nt)  (−t)^n  (−e^(−t) )dt  = ∫_0 ^∞   (−1)^n  t^n  e^(−(n+1)t)  dt =_((n+1)t =u)    (−1)^n ∫_0 ^∞    (u^n /((n+1)^n )) e^(−u)  (du/((n+1)))  =(((−1)^n )/((n+1)^(n+1) )) ∫_0 ^∞   u^n  e^(−u)  du   we know that Γ(x) =∫_0 ^∞ t^(x−1)  e^(−t)  dt ⇒  ∫_0 ^∞   u^n  e^(−u)  du =Γ(n+1)=n! ⇒w_n =(((−1)^n n!)/((n+1)^(n+1) )) ⇒  A =Σ_(n=0) ^∞  (((−1)^n )/(n!)) (((−1)^n n!)/((n+1)^(n+1) )) =Σ_(n=0) ^∞   (1/((n+1)^(n+1) )) =Σ_(n=1) ^∞  (1/n^n )  =1 +(1/2^2 ) +(1/3^3 ) +(1/4^4 ) +....
$${we}\:{have}\:\:{x}^{−{x}} \:={e}^{−{xln}\left({x}\right)} \:{let}\:\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\Rightarrow{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{xlnx}} {dx} \\ $$$${we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{xln}\left({x}\right)\:=\mathrm{0}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}^{} } \:\:{e}^{−{xlnx}} \:=\mathrm{1}\:\:{so} \\ $$$${the}\:{function}\:{x}\rightarrow{e}^{−{xlnx}} \:{is}\:{integrable}\:{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$${we}\:{have}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−{xlnx}\right)^{{n}} }{{n}!}{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left({lnx}\right)^{{n}} \:{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}{w}_{{n}} \\ $$$${w}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \left({lnx}\right)^{{n}} {dx}\:=_{{lnx}\:=−{t}} \:\:\:\int_{+\infty} ^{\mathrm{0}} \:{e}^{−{nt}} \:\left(−{t}\right)^{{n}} \:\left(−{e}^{−{t}} \right){dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:{t}^{{n}} \:{e}^{−\left({n}+\mathrm{1}\right){t}} \:{dt}\:=_{\left({n}+\mathrm{1}\right){t}\:={u}} \:\:\:\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{u}^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}} }\:{e}^{−{u}} \:\frac{{du}}{\left({n}+\mathrm{1}\right)} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{n}} \:{e}^{−{u}} \:{du}\:\:\:{we}\:{know}\:{that}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{n}} \:{e}^{−{u}} \:{du}\:=\Gamma\left({n}+\mathrm{1}\right)={n}!\:\Rightarrow{w}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{n}} } \\ $$$$=\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{4}} }\:+…. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *