Menu Close

find-0-1-x-x-dx-study-first-the-convergence-




Question Number 64528 by mathmax by abdo last updated on 19/Jul/19
find  ∫_0 ^1  x^(−x) dx   study first the convergence.
find01xxdxstudyfirsttheconvergence.
Commented by mathmax by abdo last updated on 19/Jul/19
we have  x^(−x)  =e^(−xln(x))  let  A =∫_0 ^1  x^(−x) dx ⇒A =∫_0 ^1  e^(−xlnx) dx  we have lim_(x→0^+ )    xln(x) =0 ⇒lim_(x→0^ )   e^(−xlnx)  =1  so  the function x→e^(−xlnx)  is integrable on [0,1]  we have A =∫_0 ^1 Σ_(n=0) ^∞  (((−xlnx)^n )/(n!))dx =Σ_(n=0) ^∞ (((−1)^n )/(n!)) ∫_0 ^1 x^n (lnx)^n  dx  =Σ_(n=0) ^∞  (((−1)^n )/(n!))w_n   w_n =∫_0 ^1  x^n (lnx)^n dx =_(lnx =−t)    ∫_(+∞) ^0  e^(−nt)  (−t)^n  (−e^(−t) )dt  = ∫_0 ^∞   (−1)^n  t^n  e^(−(n+1)t)  dt =_((n+1)t =u)    (−1)^n ∫_0 ^∞    (u^n /((n+1)^n )) e^(−u)  (du/((n+1)))  =(((−1)^n )/((n+1)^(n+1) )) ∫_0 ^∞   u^n  e^(−u)  du   we know that Γ(x) =∫_0 ^∞ t^(x−1)  e^(−t)  dt ⇒  ∫_0 ^∞   u^n  e^(−u)  du =Γ(n+1)=n! ⇒w_n =(((−1)^n n!)/((n+1)^(n+1) )) ⇒  A =Σ_(n=0) ^∞  (((−1)^n )/(n!)) (((−1)^n n!)/((n+1)^(n+1) )) =Σ_(n=0) ^∞   (1/((n+1)^(n+1) )) =Σ_(n=1) ^∞  (1/n^n )  =1 +(1/2^2 ) +(1/3^3 ) +(1/4^4 ) +....
wehavexx=exln(x)letA=01xxdxA=01exlnxdxwehavelimx0+xln(x)=0limx0exlnx=1sothefunctionxexlnxisintegrableon[0,1]wehaveA=01n=0(xlnx)nn!dx=n=0(1)nn!01xn(lnx)ndx=n=0(1)nn!wnwn=01xn(lnx)ndx=lnx=t+0ent(t)n(et)dt=0(1)ntne(n+1)tdt=(n+1)t=u(1)n0un(n+1)neudu(n+1)=(1)n(n+1)n+10uneuduweknowthatΓ(x)=0tx1etdt0uneudu=Γ(n+1)=n!wn=(1)nn!(n+1)n+1A=n=0(1)nn!(1)nn!(n+1)n+1=n=01(n+1)n+1=n=11nn=1+122+133+144+.

Leave a Reply

Your email address will not be published. Required fields are marked *