Question Number 83383 by mhmd last updated on 01/Mar/20
$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} \int_{\mathrm{0}} ^{\mathrm{2}−{z}} {zdxdydz} \\ $$$${pleas}\:{help}\:{me}\:{sir} \\ $$
Answered by mr W last updated on 01/Mar/20
$$\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} \int_{\mathrm{0}} ^{\mathrm{2}−{z}} {zdxdydz} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} \left(\int_{\mathrm{0}} ^{\mathrm{2}−{z}} {zdy}\right){dzdx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \left(\int_{\mathrm{0}} ^{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} {z}\left(\mathrm{2}−{z}\right){dz}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \left[{z}^{\mathrm{2}} −\frac{{z}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \left[\mathrm{4}−{x}^{\mathrm{2}} −\frac{\left(\mathrm{4}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}\right]{dx} \\ $$$$=\mathrm{4}×\mathrm{2}−\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{4}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dx} \\ $$$$=\frac{\mathrm{16}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{4}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dx} \\ $$$$=\frac{\mathrm{16}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{3}\pi\:\:\:\left({see}\:{below}\right) \\ $$$$=\frac{\mathrm{16}}{\mathrm{3}}−\pi \\ $$$$ \\ $$$${let}\:{x}=\mathrm{2}\:\mathrm{sin}\:\theta \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{4}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:\mathrm{2}\:\mathrm{cos}\:\theta\:{d}\theta \\ $$$$=\mathrm{16}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{4}} \:\theta\:{d}\theta \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} \:{d}\theta \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right)^{\mathrm{2}} \:{d}\theta \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\theta\right)\:{d}\theta \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta+\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{4}\theta}{\mathrm{2}}\right)\:{d}\theta \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta+\frac{\mathrm{cos}\:\mathrm{4}\theta}{\mathrm{2}}\right)\:{d}\theta \\ $$$$=\mathrm{4}\left[\frac{\mathrm{3}}{\mathrm{2}}\theta+\mathrm{sin}\:\mathrm{2}\theta+\frac{\mathrm{sin}\:\mathrm{4}\theta}{\mathrm{8}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\mathrm{4}×\frac{\mathrm{3}}{\mathrm{2}}×\frac{\pi}{\mathrm{2}} \\ $$$$=\mathrm{3}\pi \\ $$