Menu Close

find-0-2pi-cos-n-2-3cos-d-n-from-N-




Question Number 29856 by abdo imad last updated on 13/Feb/18
find  ∫_0 ^(2π)    ((cos(nθ))/(2+3cosθ))dθ .  n from N.
find02πcos(nθ)2+3cosθdθ.nfromN.
Commented by prof Abdo imad last updated on 18/Feb/18
let put I= ∫_0 ^(2π)   ((cos(nθ))/(2+3cosθ))dθ  I = Re( ∫_0 ^(2π)    (e^(inθ) /(2+cosθ))dθ)=Re(w_n ) ch. e^(iθ)  =z give  w_n = ∫_(∣z∣=1)    (z^n /(2 +((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)      ((2z^n )/(iz(4 +z+z^(−1) )))dz  =∫_(∣z∣=1)    ((−2iz^n )/(4z +z^2  +1))dz =∫_(∣z∣=1)    ((−2i z^n )/(z^2  +4z +1))dz let  introduce the complex function  ϕ(z)=  ((−2iz^n )/(z^2  +4z +1)) poles of ϕ?  Δ^′ = 2^2 −1 =3 ⇒z_1 =−2+(√3)  and z_2 =−2−(√3)  ∣z_1 ∣ −1=2−(√3) −1=1−(√3)<1 and  ∣z_2 ∣ −1=2+(√3)−1=1+(√3)>1(to eliminate from  residus) so  ∫_(∣z∣=1) ϕ(z)dz=2iπ Res(ϕ,z_1 ) but we have  ϕ(z)= ((−2i z^n )/((z−z_1 )(z−z_2 ))) ⇒  Res(ϕ,z_1 )= ((−2i z_1 ^n )/(z_1  −z_2 )) =  ((−2i(−2+(√3) )^n )/(2(√3)))  =   ((−i(−2+(√3))^n )/( (√3)))  ∫_(∣z∣=1) ϕ(z)dz= ((2π)/( (√3))) (−2+(√3))^n   Re( ∫.....)= ((2π)/( (√3)))(−2+(√3))^n ⇒  I= ((2π)/( (√3)))(−2+(√3))^n   .
letputI=02πcos(nθ)2+3cosθdθI=Re(02πeinθ2+cosθdθ)=Re(wn)ch.eiθ=zgivewn=z∣=1zn2+z+z12dziz=z∣=12zniz(4+z+z1)dz=z∣=12izn4z+z2+1dz=z∣=12iznz2+4z+1dzletintroducethecomplexfunctionφ(z)=2iznz2+4z+1polesofφ?Δ=221=3z1=2+3andz2=23z11=231=13<1andz21=2+31=1+3>1(toeliminatefromresidus)soz∣=1φ(z)dz=2iπRes(φ,z1)butwehaveφ(z)=2izn(zz1)(zz2)Res(φ,z1)=2iz1nz1z2=2i(2+3)n23=i(2+3)n3z∣=1φ(z)dz=2π3(2+3)nRe(..)=2π3(2+3)nI=2π3(2+3)n.

Leave a Reply

Your email address will not be published. Required fields are marked *