Question Number 29856 by abdo imad last updated on 13/Feb/18
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta\:.\:\:{n}\:{from}\:{N}. \\ $$
Commented by prof Abdo imad last updated on 18/Feb/18
$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta \\ $$$${I}\:=\:{Re}\left(\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{e}^{{in}\theta} }{\mathrm{2}+{cos}\theta}{d}\theta\right)={Re}\left({w}_{{n}} \right)\:{ch}.\:{e}^{{i}\theta} \:={z}\:{give} \\ $$$${w}_{{n}} =\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{z}^{{n}} }{\mathrm{2}\:+\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}{z}^{{n}} }{{iz}\left(\mathrm{4}\:+{z}+{z}^{−\mathrm{1}} \right)}{dz} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{iz}^{{n}} }{\mathrm{4}{z}\:+{z}^{\mathrm{2}} \:+\mathrm{1}}{dz}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{i}\:{z}^{{n}} }{{z}^{\mathrm{2}} \:+\mathrm{4}{z}\:+\mathrm{1}}{dz}\:{let} \\ $$$${introduce}\:{the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)=\:\:\frac{−\mathrm{2}{iz}^{{n}} }{{z}^{\mathrm{2}} \:+\mathrm{4}{z}\:+\mathrm{1}}\:{poles}\:{of}\:\varphi? \\ $$$$\Delta^{'} =\:\mathrm{2}^{\mathrm{2}} −\mathrm{1}\:=\mathrm{3}\:\Rightarrow{z}_{\mathrm{1}} =−\mathrm{2}+\sqrt{\mathrm{3}}\:\:{and}\:{z}_{\mathrm{2}} =−\mathrm{2}−\sqrt{\mathrm{3}} \\ $$$$\mid{z}_{\mathrm{1}} \mid\:−\mathrm{1}=\mathrm{2}−\sqrt{\mathrm{3}}\:−\mathrm{1}=\mathrm{1}−\sqrt{\mathrm{3}}<\mathrm{1}\:{and} \\ $$$$\mid{z}_{\mathrm{2}} \mid\:−\mathrm{1}=\mathrm{2}+\sqrt{\mathrm{3}}−\mathrm{1}=\mathrm{1}+\sqrt{\mathrm{3}}>\mathrm{1}\left({to}\:{eliminate}\:{from}\right. \\ $$$$\left.{residus}\right)\:{so} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{1}} \right)\:{but}\:{we}\:{have} \\ $$$$\varphi\left({z}\right)=\:\frac{−\mathrm{2}{i}\:{z}^{{n}} }{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${Res}\left(\varphi,{z}_{\mathrm{1}} \right)=\:\frac{−\mathrm{2}{i}\:{z}_{\mathrm{1}} ^{{n}} }{{z}_{\mathrm{1}} \:−{z}_{\mathrm{2}} }\:=\:\:\frac{−\mathrm{2}{i}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\:\right)^{{n}} }{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$=\:\:\:\frac{−{i}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} }{\:\sqrt{\mathrm{3}}} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\:\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} \\ $$$${Re}\left(\:\int…..\right)=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} \Rightarrow \\ $$$${I}=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\left(−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{n}} \:\:. \\ $$