Question Number 31513 by abdo imad last updated on 09/Mar/18
$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{2}\:+{cosx}}\:\:. \\ $$
Commented by abdo imad last updated on 10/Mar/18
$${the}\:{ch}.\:{e}^{{ix}} ={z}\:{give} \\ $$$${I}=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}+\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}}=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{2}{dz}}{{iz}\left(\mathrm{4}\:+{z}\:+{z}^{−\mathrm{1}} \right)} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\frac{−\mathrm{2}{i}\:{dz}}{\mathrm{4}{z}\:+{z}^{\mathrm{2}} \:+\mathrm{1}}\:=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{idz}}{{z}^{\mathrm{2}} \:+\mathrm{4}{z}\:+\mathrm{1}}\:{let}\:{consider} \\ $$$$\varphi\left({z}\right)=\:\frac{−\mathrm{2}{i}}{{z}^{\mathrm{2}} \:+\mathrm{4}{z}\:+\mathrm{1}}\:\:{poles}\:{of}\:\varphi? \\ $$$$\Delta^{'} =\mathrm{2}^{\mathrm{2}} \:−\mathrm{1}=\mathrm{3}\:\:\Rightarrow\:{z}_{\mathrm{1}} =−\mathrm{2}\:+\sqrt{\mathrm{3}}\:\:{and}\:{z}_{\mathrm{2}} =−\mathrm{2}−\sqrt{\mathrm{3}}\:\: \\ $$$$\mid{z}_{\mathrm{1}} \mid\:−\mathrm{1}=\mathrm{2}−\sqrt{\mathrm{3}}\:−\mathrm{1}=\mathrm{1}−\sqrt{\mathrm{3}}\:\:<\mathrm{0}\:\Rightarrow\:\mid{z}_{\mathrm{1}} \mid<\mathrm{1} \\ $$$$\mid{z}_{\mathrm{2}} \mid\:−\mathrm{1}=\mathrm{2}+\sqrt{\mathrm{3}}\:−\mathrm{1}=\mathrm{1}+\sqrt{\mathrm{3}}\:>\mathrm{1}\:\left({to}\:{eliminate}\:{from}\:{residus}\right) \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{1}} \right)\:{but}\:\varphi\left({z}\right)=\:\frac{−\mathrm{2}{i}}{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)} \\ $$$$\Rightarrow\:{Res}\left(\varphi,{z}_{\mathrm{1}} \right)=\:\frac{−\mathrm{2}{i}}{{z}_{\mathrm{1}} \:−{z}_{\mathrm{2}} }=\:\frac{−\mathrm{2}{i}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:=\frac{−{i}}{\:\sqrt{\mathrm{3}}} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:.\frac{−{i}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}\:}\:\Rightarrow\:\:{I}=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\:. \\ $$
Answered by Joel578 last updated on 12/Mar/18
$${I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dx}}{\mathrm{2}\:+\:\mathrm{cos}\:{x}}\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{dx}}{\mathrm{2}\:+\:\mathrm{cos}\:{x}} \\ $$$$ \\ $$$${t}\:=\:\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)\:\:\rightarrow\:\:{dt}\:=\:\frac{\mathrm{1}\:+\:{t}^{\mathrm{2}} }{\mathrm{2}}\:{dx} \\ $$$$\mathrm{cos}\:{x}\:=\:\frac{\mathrm{1}\:−\:{t}^{\mathrm{2}} }{\mathrm{1}\:+\:{t}^{\mathrm{2}} } \\ $$$$ \\ $$$${I}\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\frac{\mathrm{2}}{\mathrm{1}\:+\:{t}^{\mathrm{2}} }}{\frac{\mathrm{2}\:+\:\mathrm{2}{t}^{\mathrm{2}} }{\mathrm{1}\:+\:{t}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}\:−\:{t}^{\mathrm{2}} }{\mathrm{1}\:+\:{t}^{\mathrm{2}} }}\:{dt} \\ $$$$\:\:\:\:=\:\mathrm{4}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\int_{\mathrm{0}} ^{{n}} \:\frac{{dt}}{\mathrm{3}\:+\:{t}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:=\:\mathrm{4}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{t}}{\:\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{{n}} \\ $$$$\:\:\:\:=\:\mathrm{4}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{n}}{\:\sqrt{\mathrm{3}}}\right)\:−\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \:\left(\mathrm{0}\right)\:\right) \\ $$$$\:\:\:\:=\:\mathrm{4}\:.\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\infty\right) \\ $$$${I}\:\:=\:\mathrm{4}\:.\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:.\:\frac{\pi}{\mathrm{2}}\:=\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}} \\ $$