Menu Close

Find-0-6-sin-x-sin-x-pi-3-sin-x-2pi-3-sin-3x-cos-3x-dx-Answer-pi-48-




Question Number 159528 by HongKing last updated on 18/Nov/21
Find:  𝛀 =∫_( 0) ^( (𝛑/6)) ((sin(x)βˆ™sin(x + (Ο€/3))βˆ™sin(x + ((2Ο€)/3)))/(sin(3x) + cos(3x))) dx  Answer:  (Ο€/(48))
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{6}}} {\int}}\frac{\mathrm{sin}\left(\mathrm{x}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\pi}{\mathrm{3}}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right)}{\mathrm{sin}\left(\mathrm{3x}\right)\:+\:\mathrm{cos}\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$$$\mathrm{Answer}:\:\:\frac{\pi}{\mathrm{48}} \\ $$
Answered by mnjuly1970 last updated on 18/Nov/21
   Identity::  sin(x).sin((Ο€/3)βˆ’x).sin((Ο€/3) +x )=(1/4)sin(3x)     note:  sin(((2Ο€)/3) +x)=sin(Ο€βˆ’((2Ο€)/3)βˆ’x)=sin((Ο€/3) βˆ’x)     Ξ© =(1/4)∫_0 ^( (Ο€/6)) ((sin(3x))/(sin(3x)+cos(3x)))dx        = (1/(12)){∫ _0^(Ο€/2) (( sin(x))/(sin(x)+cos(x))) dx=_(∫_a ^( b) f(a+bβˆ’x)dx) ^(∫_a ^( b) f(x)dx) βˆ₯     (Ο€/4)}        = (1/(12)) ((Ο€/4))=(Ο€/(48))   ...βœ“
$$\:\:\:\mathrm{I}{dentity}::\:\:{sin}\left({x}\right).{sin}\left(\frac{\pi}{\mathrm{3}}βˆ’{x}\right).{sin}\left(\frac{\pi}{\mathrm{3}}\:+{x}\:\right)=\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{3}{x}\right) \\ $$$$\:\:\:{note}:\:\:{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\:+{x}\right)={sin}\left(\piβˆ’\frac{\mathrm{2}\pi}{\mathrm{3}}βˆ’{x}\right)={sin}\left(\frac{\pi}{\mathrm{3}}\:βˆ’{x}\right) \\ $$$$\:\:\:\Omega\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{6}}} \frac{{sin}\left(\mathrm{3}{x}\right)}{{sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)}{dx} \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{12}}\left\{\int\:_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left({x}\right)}{{sin}\left({x}\right)+{cos}\left({x}\right)}\:{dx}\underset{\int_{{a}} ^{\:{b}} {f}\left({a}+{b}βˆ’{x}\right){dx}} {\overset{\int_{{a}} ^{\:{b}} {f}\left({x}\right){dx}} {=}}\shortparallel\:\:\:\:\:\frac{\pi}{\mathrm{4}}\right\} \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{12}}\:\left(\frac{\pi}{\mathrm{4}}\right)=\frac{\pi}{\mathrm{48}}\:\:\:…\checkmark \\ $$
Commented by HongKing last updated on 18/Nov/21
cool thank you so much my dear Ser
$$\mathrm{cool}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser} \\ $$
Commented by mnjuly1970 last updated on 18/Nov/21
    thanks alot sir..
$$\:\:\:\:{thanks}\:{alot}\:{sir}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *