Menu Close

find-0-cos-6-cos-4-d-plase-help-me-in-cinding-this-And-also-explain-if-possible-




Question Number 52164 by pooja24 last updated on 04/Jan/19
find:  ∫_0 ^Π (cos^6 θ −cos^4 θ) dθ  plase help me in cinding this And also  explain if possible
find:Π0(cos6θcos4θ)dθplasehelpmeincindingthisAndalsoexplainifpossible
Commented by prakash jain last updated on 04/Jan/19
∫_0 ^(π/2) sin^m xcos^n xdx  =(([(n−1)(n−3)..1 or 2]](m−1)(m−3)..1or2])/((m+n)(m+n−2)... 1 or 2))K  whereK=(π/2) if both m,n are even               K=1 otherwise  I=∫_0 ^(π/2) cos^6 xdx−∫_0 ^(π/2) cos^4 xdx  +∫_(π/2) ^π cos^6 xdx−∫_(π/2) ^π cos^4 xdx  ∫_(π/2) ^π cos^6 xdx=∫_0 ^(π/2) sin^6 xdx=∫_0 ^(π/2) cos^6 xdx  ∫_(π/2) ^π cos^4 xdx=∫_0 ^(π/2) sin^4 xdx=∫_0 ^(π/2) cos^4 xdx  I=2[∫_0 ^(π/2) cos^6 xdx−∫_0 ^(π/2) cos^4 xdx]  =2[((5∙3∙1)/(6∙4∙2))−((3∙1)/(4∙2))](π/2)  ∵m=6 even  =2[(5/(16))−(3/8)](π/2)  =−(π/(16))
0π/2sinmxcosnxdx=[(n1)(n3)..1or2]](m1)(m3)..1or2](m+n)(m+n2)1or2KwhereK=π2ifbothm,nareevenK=1otherwiseI=0π/2cos6xdx0π/2cos4xdx+π/2πcos6xdxπ/2πcos4xdxπ/2πcos6xdx=0π/2sin6xdx=0π/2cos6xdxπ/2πcos4xdx=0π/2sin4xdx=0π/2cos4xdxI=2[0π/2cos6xdx0π/2cos4xdx]=2[5316423142]π2m=6even=2[51638]π2=π16
Commented by maxmathsup by imad last updated on 04/Jan/19
let I =∫_0 ^π (cos^6 x−cos^4 x)dx ⇒I =∫_0 ^π (cos^4 x(1−sin^2 x−cos^4 x)dx  =−∫_0 ^π  sin^2 x cos^4 x dx =−∫_0 ^π ((1−cos(2x))/2)(((1+cos(2x))/2))^2 dx  =−(1/8) ∫_0 ^π (1−cos^2 (2x))(1+cos(2x))dx  =−(1/8) ∫_0 ^π (1−((1+cos(4x))/2))(1+cos(2x))dx  =−(1/8) ∫_0 ^π (((1−cos(4x))/2))(1+cos(2x))dx  =−(1/(16)) ∫_0 ^π (1+cos(2x)−cos(4x)−cos(2x)cos(4x))dx  =−(π/(16)) −(1/(16)) ∫_0 ^π cos(2x)dx+(1/(16)) ∫_0 ^π cos(4x)dx +(1/(16)) ∫_0 ^π cos(2x)cos(4x)dx  =−(π/(16)) −(1/(32))[sin(2x)]_0 ^π  +(1/(64))[sin(4x)]_0 ^π    +(1/(32)) ∫_0 ^π (cos(6x)+cos(2x))dx  =−(π/(16)) +0 +0 +0 =−(π/(16)) .
letI=0π(cos6xcos4x)dxI=0π(cos4x(1sin2xcos4x)dx=0πsin2xcos4xdx=0π1cos(2x)2(1+cos(2x)2)2dx=180π(1cos2(2x))(1+cos(2x))dx=180π(11+cos(4x)2)(1+cos(2x))dx=180π(1cos(4x)2)(1+cos(2x))dx=1160π(1+cos(2x)cos(4x)cos(2x)cos(4x))dx=π161160πcos(2x)dx+1160πcos(4x)dx+1160πcos(2x)cos(4x)dx=π16132[sin(2x)]0π+164[sin(4x)]0π+1320π(cos(6x)+cos(2x))dx=π16+0+0+0=π16.
Commented by maxmathsup by imad last updated on 04/Jan/19
error of typo at first line I =∫_0 ^π {cos^4 x(1−sin^2 x)−cos^4 x}dx...
erroroftypoatfirstlineI=0π{cos4x(1sin2x)cos4x}dx
Commented by pooja24 last updated on 05/Jan/19
thank you
thankyou
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jan/19
−cos^4 θ(1−cos^2 θ)  =−cos^4 θsin^2 θ  =−(((1+cos2θ)/2))^2 (((1−cos2θ)/2))  =−(1/8)(1+cos2θ)(1−cos^2 2θ)  =−(1/8)(1+cos2θ)(1−((1+cos4θ)/2))  =((−1)/(16))(1+cos2θ)(2−1−cos4θ)  =((−1)/(16))(1+cos2θ)(1−cos4θ)  =((−1)/(16))(1−cos4θ+cos2θ−cos2θcos4θ)  =((−1)/(16))(1−cos4θ+cos2θ−((cos6θ+cos2θ)/2))  =((−1)/(32))(2−2cos4θ+2cos2θ−cos6θ−cos2θ)  =(1/(32))(cos6θ+2cos4θ−cos2θ−2)  now   (1/(32))∫_0 ^π cos6θ+2cos4θ−cos2θ−(1/(16))∫_0 ^π dθ  (1/(32))∣((sin6θ)/6)+((2sin4θ)/4)−((sin2θ)/2)∣_0 ^π −(1/(16))×π                              _  ⇓_(intregal value zero_ )     −(1/(16))×π    answer is =((−π)/(16))                       [sinnπ=0]  pls chek...
cos4θ(1cos2θ)=cos4θsin2θ=(1+cos2θ2)2(1cos2θ2)=18(1+cos2θ)(1cos22θ)=18(1+cos2θ)(11+cos4θ2)=116(1+cos2θ)(21cos4θ)=116(1+cos2θ)(1cos4θ)=116(1cos4θ+cos2θcos2θcos4θ)=116(1cos4θ+cos2θcos6θ+cos2θ2)=132(22cos4θ+2cos2θcos6θcos2θ)=132(cos6θ+2cos4θcos2θ2)now1320πcos6θ+2cos4θcos2θ1160πdθ132sin6θ6+2sin4θ4sin2θ20π116×πintregalvaluezero116×πansweris=π16[sinnπ=0]plschek
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jan/19

Leave a Reply

Your email address will not be published. Required fields are marked *