Question Number 52164 by pooja24 last updated on 04/Jan/19

Commented by prakash jain last updated on 04/Jan/19
![∫_0 ^(π/2) sin^m xcos^n xdx =(([(n−1)(n−3)..1 or 2]](m−1)(m−3)..1or2])/((m+n)(m+n−2)... 1 or 2))K whereK=(π/2) if both m,n are even K=1 otherwise I=∫_0 ^(π/2) cos^6 xdx−∫_0 ^(π/2) cos^4 xdx +∫_(π/2) ^π cos^6 xdx−∫_(π/2) ^π cos^4 xdx ∫_(π/2) ^π cos^6 xdx=∫_0 ^(π/2) sin^6 xdx=∫_0 ^(π/2) cos^6 xdx ∫_(π/2) ^π cos^4 xdx=∫_0 ^(π/2) sin^4 xdx=∫_0 ^(π/2) cos^4 xdx I=2[∫_0 ^(π/2) cos^6 xdx−∫_0 ^(π/2) cos^4 xdx] =2[((5∙3∙1)/(6∙4∙2))−((3∙1)/(4∙2))](π/2) ∵m=6 even =2[(5/(16))−(3/8)](π/2) =−(π/(16))](https://www.tinkutara.com/question/Q52179.png)
Commented by maxmathsup by imad last updated on 04/Jan/19
![let I =∫_0 ^π (cos^6 x−cos^4 x)dx ⇒I =∫_0 ^π (cos^4 x(1−sin^2 x−cos^4 x)dx =−∫_0 ^π sin^2 x cos^4 x dx =−∫_0 ^π ((1−cos(2x))/2)(((1+cos(2x))/2))^2 dx =−(1/8) ∫_0 ^π (1−cos^2 (2x))(1+cos(2x))dx =−(1/8) ∫_0 ^π (1−((1+cos(4x))/2))(1+cos(2x))dx =−(1/8) ∫_0 ^π (((1−cos(4x))/2))(1+cos(2x))dx =−(1/(16)) ∫_0 ^π (1+cos(2x)−cos(4x)−cos(2x)cos(4x))dx =−(π/(16)) −(1/(16)) ∫_0 ^π cos(2x)dx+(1/(16)) ∫_0 ^π cos(4x)dx +(1/(16)) ∫_0 ^π cos(2x)cos(4x)dx =−(π/(16)) −(1/(32))[sin(2x)]_0 ^π +(1/(64))[sin(4x)]_0 ^π +(1/(32)) ∫_0 ^π (cos(6x)+cos(2x))dx =−(π/(16)) +0 +0 +0 =−(π/(16)) .](https://www.tinkutara.com/question/Q52195.png)
Commented by maxmathsup by imad last updated on 04/Jan/19

Commented by pooja24 last updated on 05/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jan/19
![−cos^4 θ(1−cos^2 θ) =−cos^4 θsin^2 θ =−(((1+cos2θ)/2))^2 (((1−cos2θ)/2)) =−(1/8)(1+cos2θ)(1−cos^2 2θ) =−(1/8)(1+cos2θ)(1−((1+cos4θ)/2)) =((−1)/(16))(1+cos2θ)(2−1−cos4θ) =((−1)/(16))(1+cos2θ)(1−cos4θ) =((−1)/(16))(1−cos4θ+cos2θ−cos2θcos4θ) =((−1)/(16))(1−cos4θ+cos2θ−((cos6θ+cos2θ)/2)) =((−1)/(32))(2−2cos4θ+2cos2θ−cos6θ−cos2θ) =(1/(32))(cos6θ+2cos4θ−cos2θ−2) now (1/(32))∫_0 ^π cos6θ+2cos4θ−cos2θ−(1/(16))∫_0 ^π dθ (1/(32))∣((sin6θ)/6)+((2sin4θ)/4)−((sin2θ)/2)∣_0 ^π −(1/(16))×π _ ⇓_(intregal value zero_ ) −(1/(16))×π answer is =((−π)/(16)) [sinnπ=0] pls chek...](https://www.tinkutara.com/question/Q52170.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jan/19
