Menu Close

find-0-cos-zx-2-dx-with-z-C-




Question Number 61528 by maxmathsup by imad last updated on 04/Jun/19
find  ∫_0 ^∞   cos(zx^2 )dx with z ∈ C .
find0cos(zx2)dxwithzC.
Commented by maxmathsup by imad last updated on 04/Jun/19
let I =∫_0 ^∞  cos(zx^2 )dx ⇒2I =∫_(−∞) ^(+∞)  cos(zx^2 )  let z =a+ib ⇒  2I =∫_(−∞) ^(+∞)  cos((a+ib)x^2 )   but   cos(z) =ch(iz) ⇒  2I =∫_(−∞) ^(+∞)  ch(i(a+ib)x^2 )dx =∫_(−∞) ^(+∞)  ch(iax^2  −bx^2 )dx  =∫_(−∞) ^(+∞)    ((e^(i(iax^2 −bx^2 ))  +e^(−i(iax^2 −bx^2 )) )/2) dx  =∫_(−∞) ^(+∞)    ((e^(−ax^2 −ibx^2 ) +e^(ax^2 +ibx^2 ) )/2) dx =(1/2) ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx +(1/2) ∫_(−∞) ^(+∞)   e^(−(−a−ib)x^2 ) dx  ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx=_((√(a+ib))x =t)       ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/( (√(a+ib)))) =(π/( (√(a+ib)))) =(π/( (√z)))  ∫_(−∞) ^(+∞)    e^(−(−a−ib)x^2 ) dx =_((√(−a−ib))x =t)      ∫_(−∞) ^(+∞)  e^(−t^2 )    (dt/( (√(−a−ib)))) =(π/( (√(−a−ib))))  =(π/( (√(−1))(√(a+ib)))) =(π/(i(√z))) ⇒ 2I =(π/(2(√z))) +(π/(2i(√z))) =(π/(2(√z))) −((iπ)/(2(√z)))  ⇒I =(π/4)((1−i)/( (√z)))  if we take z =re^(iθ)    we get I =(π/4) ((1−i)/( (√r)e^(i(θ/2)) )) =(π/(4(√r)))  (√2)e^(−((iπ)/4))  e^(−((iθ)/2))  =((π(√2))/(4(√r))) e^(i(−(π/4)−(θ/2)))   I = ((π(√2))/(4(√r))) e^(−i((π/4)+(θ/2)))   .
letI=0cos(zx2)dx2I=+cos(zx2)letz=a+ib2I=+cos((a+ib)x2)butcos(z)=ch(iz)2I=+ch(i(a+ib)x2)dx=+ch(iax2bx2)dx=+ei(iax2bx2)+ei(iax2bx2)2dx=+eax2ibx2+eax2+ibx22dx=12+e(a+ib)x2dx+12+e(aib)x2dx+e(a+ib)x2dx=a+ibx=t+et2dta+ib=πa+ib=πz+e(aib)x2dx=aibx=t+et2dtaib=πaib=π1a+ib=πiz2I=π2z+π2iz=π2ziπ2zI=π41izifwetakez=reiθwegetI=π41ireiθ2=π4r2eiπ4eiθ2=π24rei(π4θ2)I=π24rei(π4+θ2).
Commented by Smail last updated on 05/Jun/19
You mean  ∫_(−∞) ^∞ e^(−t^2 ) dt=(√π)   not π
Youmeanet2dt=πnotπ
Commented by maxmathsup by imad last updated on 08/Jun/19
yes sir  ....
yessir.
Commented by maxmathsup by imad last updated on 08/Jun/19
due to  ∫_(−∞) ^(+∞)   e^(−t^2 ) dt =(√π)    the final answer is I =((√(2π))/(4(√r))) e^(−i((π/4)+(θ/2)))
dueto+et2dt=πthefinalanswerisI=2π4rei(π4+θ2)

Leave a Reply

Your email address will not be published. Required fields are marked *