Menu Close

find-0-cos-zx-2-dx-with-z-C-




Question Number 61528 by maxmathsup by imad last updated on 04/Jun/19
find  ∫_0 ^∞   cos(zx^2 )dx with z ∈ C .
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{cos}\left({zx}^{\mathrm{2}} \right){dx}\:{with}\:{z}\:\in\:{C}\:. \\ $$
Commented by maxmathsup by imad last updated on 04/Jun/19
let I =∫_0 ^∞  cos(zx^2 )dx ⇒2I =∫_(−∞) ^(+∞)  cos(zx^2 )  let z =a+ib ⇒  2I =∫_(−∞) ^(+∞)  cos((a+ib)x^2 )   but   cos(z) =ch(iz) ⇒  2I =∫_(−∞) ^(+∞)  ch(i(a+ib)x^2 )dx =∫_(−∞) ^(+∞)  ch(iax^2  −bx^2 )dx  =∫_(−∞) ^(+∞)    ((e^(i(iax^2 −bx^2 ))  +e^(−i(iax^2 −bx^2 )) )/2) dx  =∫_(−∞) ^(+∞)    ((e^(−ax^2 −ibx^2 ) +e^(ax^2 +ibx^2 ) )/2) dx =(1/2) ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx +(1/2) ∫_(−∞) ^(+∞)   e^(−(−a−ib)x^2 ) dx  ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx=_((√(a+ib))x =t)       ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/( (√(a+ib)))) =(π/( (√(a+ib)))) =(π/( (√z)))  ∫_(−∞) ^(+∞)    e^(−(−a−ib)x^2 ) dx =_((√(−a−ib))x =t)      ∫_(−∞) ^(+∞)  e^(−t^2 )    (dt/( (√(−a−ib)))) =(π/( (√(−a−ib))))  =(π/( (√(−1))(√(a+ib)))) =(π/(i(√z))) ⇒ 2I =(π/(2(√z))) +(π/(2i(√z))) =(π/(2(√z))) −((iπ)/(2(√z)))  ⇒I =(π/4)((1−i)/( (√z)))  if we take z =re^(iθ)    we get I =(π/4) ((1−i)/( (√r)e^(i(θ/2)) )) =(π/(4(√r)))  (√2)e^(−((iπ)/4))  e^(−((iθ)/2))  =((π(√2))/(4(√r))) e^(i(−(π/4)−(θ/2)))   I = ((π(√2))/(4(√r))) e^(−i((π/4)+(θ/2)))   .
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:{cos}\left({zx}^{\mathrm{2}} \right){dx}\:\Rightarrow\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:{cos}\left({zx}^{\mathrm{2}} \right)\:\:{let}\:{z}\:={a}+{ib}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:{cos}\left(\left({a}+{ib}\right){x}^{\mathrm{2}} \right)\:\:\:{but}\:\:\:{cos}\left({z}\right)\:={ch}\left({iz}\right)\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:{ch}\left({i}\left({a}+{ib}\right){x}^{\mathrm{2}} \right){dx}\:=\int_{−\infty} ^{+\infty} \:{ch}\left({iax}^{\mathrm{2}} \:−{bx}^{\mathrm{2}} \right){dx} \\ $$$$=\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{i}\left({iax}^{\mathrm{2}} −{bx}^{\mathrm{2}} \right)} \:+{e}^{−{i}\left({iax}^{\mathrm{2}} −{bx}^{\mathrm{2}} \right)} }{\mathrm{2}}\:{dx} \\ $$$$=\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{−{ax}^{\mathrm{2}} −{ibx}^{\mathrm{2}} } +{e}^{{ax}^{\mathrm{2}} +{ibx}^{\mathrm{2}} } }{\mathrm{2}}\:{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({a}+{ib}\right){x}^{\mathrm{2}} } {dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(−{a}−{ib}\right){x}^{\mathrm{2}} } {dx} \\ $$$$\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({a}+{ib}\right){x}^{\mathrm{2}} } {dx}=_{\sqrt{{a}+{ib}}{x}\:={t}} \:\:\:\:\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{dt}}{\:\sqrt{{a}+{ib}}}\:=\frac{\pi}{\:\sqrt{{a}+{ib}}}\:=\frac{\pi}{\:\sqrt{{z}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:{e}^{−\left(−{a}−{ib}\right){x}^{\mathrm{2}} } {dx}\:=_{\sqrt{−{a}−{ib}}{x}\:={t}} \:\:\:\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } \:\:\:\frac{{dt}}{\:\sqrt{−{a}−{ib}}}\:=\frac{\pi}{\:\sqrt{−{a}−{ib}}} \\ $$$$=\frac{\pi}{\:\sqrt{−\mathrm{1}}\sqrt{{a}+{ib}}}\:=\frac{\pi}{{i}\sqrt{{z}}}\:\Rightarrow\:\mathrm{2}{I}\:=\frac{\pi}{\mathrm{2}\sqrt{{z}}}\:+\frac{\pi}{\mathrm{2}{i}\sqrt{{z}}}\:=\frac{\pi}{\mathrm{2}\sqrt{{z}}}\:−\frac{{i}\pi}{\mathrm{2}\sqrt{{z}}}\:\:\Rightarrow{I}\:=\frac{\pi}{\mathrm{4}}\frac{\mathrm{1}−{i}}{\:\sqrt{{z}}} \\ $$$${if}\:{we}\:{take}\:{z}\:={re}^{{i}\theta} \:\:\:{we}\:{get}\:{I}\:=\frac{\pi}{\mathrm{4}}\:\frac{\mathrm{1}−{i}}{\:\sqrt{{r}}{e}^{{i}\frac{\theta}{\mathrm{2}}} }\:=\frac{\pi}{\mathrm{4}\sqrt{{r}}}\:\:\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{e}^{−\frac{{i}\theta}{\mathrm{2}}} \:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}\sqrt{{r}}}\:{e}^{{i}\left(−\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)} \\ $$$${I}\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}\sqrt{{r}}}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}}\right)} \:\:. \\ $$
Commented by Smail last updated on 05/Jun/19
You mean  ∫_(−∞) ^∞ e^(−t^2 ) dt=(√π)   not π
$${You}\:{mean}\:\:\int_{−\infty} ^{\infty} {e}^{−{t}^{\mathrm{2}} } {dt}=\sqrt{\pi}\:\:\:{not}\:\pi \\ $$
Commented by maxmathsup by imad last updated on 08/Jun/19
yes sir  ....
$${yes}\:{sir}\:\:…. \\ $$
Commented by maxmathsup by imad last updated on 08/Jun/19
due to  ∫_(−∞) ^(+∞)   e^(−t^2 ) dt =(√π)    the final answer is I =((√(2π))/(4(√r))) e^(−i((π/4)+(θ/2)))
$${due}\:{to}\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\sqrt{\pi}\:\:\:\:{the}\:{final}\:{answer}\:{is}\:{I}\:=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{4}\sqrt{{r}}}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}}\right)} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *