Menu Close

find-0-dt-1-t-2-4-




Question Number 28883 by abdo imad last updated on 31/Jan/18
find  ∫_0 ^∞    (dt/((1+t^2 )^4 ))
find0dt(1+t2)4
Commented by abdo imad last updated on 02/Feb/18
I=(1/2)∫_(−∞) ^(+∞)    (dt/((1+t^2 )^4 ))  let put f(z)=  (1/((1+z^2 )^4 ))  f(z)= (1/((z−i)^4 (z+i)^4 )) the poles of f are i and −i with ordr4   ∫_(−∞) ^(+∞)  f(z)dz= 2iπ Res(f,i) but  Res(f,i) =lim_(z→i)   (1/((4−1)!))((z−i)^4 f(z))^((3))   =lim_(z→i)   (1/6)(  (z+i)^(−4) )^((3))   and we have  (z+i)^(−4) )^((1)) =−4(z+i)^(−5)   ((z+i)^(−4) )^((2)) =20(z+i)^(−6)   ((z+i)^(−4) )^((3)) =−120(z+i)^(−7)   Res(f,i)= (1/6)(−120)(2i)^(−7) =((−20)/(2^7 i^7 )) but i^7 =(i^8 /i)=(1/i)  Res(f,i)=((−20i)/2^7 )=−((2^2 .5i)/2^7 )=−i(5/(32)) and  ∫_(−∞) ^(+∞) f(z)dz= 2iπ(−i(5/(32)))= ((10π)/(32))= ((5π)/(16)) .   finally  I=(1/2)∫_(−∞) ^(+∞) f(z)dz= ((5π)/(32)) .
I=12+dt(1+t2)4letputf(z)=1(1+z2)4f(z)=1(zi)4(z+i)4thepolesoffareiandiwithordr4+f(z)dz=2iπRes(f,i)butRes(f,i)=limzi1(41)!((zi)4f(z))(3)=limzi16((z+i)4)(3)andwehave(z+i)4)(1)=4(z+i)5((z+i)4)(2)=20(z+i)6((z+i)4)(3)=120(z+i)7Res(f,i)=16(120)(2i)7=2027i7buti7=i8i=1iRes(f,i)=20i27=22.5i27=i532and+f(z)dz=2iπ(i532)=10π32=5π16.finallyI=12+f(z)dz=5π32.

Leave a Reply

Your email address will not be published. Required fields are marked *