Question Number 28883 by abdo imad last updated on 31/Jan/18
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$
Commented by abdo imad last updated on 02/Feb/18
$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{4}} }\:\:{let}\:{put}\:{f}\left({z}\right)=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$$${f}\left({z}\right)=\:\frac{\mathrm{1}}{\left({z}−{i}\right)^{\mathrm{4}} \left({z}+{i}\right)^{\mathrm{4}} }\:{the}\:{poles}\:{of}\:{f}\:{are}\:{i}\:{and}\:−{i}\:{with}\:{ordr}\mathrm{4} \\ $$$$\:\int_{−\infty} ^{+\infty} \:{f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi\:{Res}\left({f},{i}\right)\:{but} \\ $$$${Res}\left({f},{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\left(\mathrm{4}−\mathrm{1}\right)!}\left(\left({z}−{i}\right)^{\mathrm{4}} {f}\left({z}\right)\right)^{\left(\mathrm{3}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\mathrm{6}}\left(\:\:\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{3}\right)} \:\:{and}\:{we}\:{have} \\ $$$$\left.\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{1}\right)} =−\mathrm{4}\left({z}+{i}\right)^{−\mathrm{5}} \\ $$$$\left(\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{2}\right)} =\mathrm{20}\left({z}+{i}\right)^{−\mathrm{6}} \\ $$$$\left(\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{3}\right)} =−\mathrm{120}\left({z}+{i}\right)^{−\mathrm{7}} \\ $$$${Res}\left({f},{i}\right)=\:\frac{\mathrm{1}}{\mathrm{6}}\left(−\mathrm{120}\right)\left(\mathrm{2}{i}\right)^{−\mathrm{7}} =\frac{−\mathrm{20}}{\mathrm{2}^{\mathrm{7}} {i}^{\mathrm{7}} }\:{but}\:{i}^{\mathrm{7}} =\frac{{i}^{\mathrm{8}} }{{i}}=\frac{\mathrm{1}}{{i}} \\ $$$${Res}\left({f},{i}\right)=\frac{−\mathrm{20}{i}}{\mathrm{2}^{\mathrm{7}} }=−\frac{\mathrm{2}^{\mathrm{2}} .\mathrm{5}{i}}{\mathrm{2}^{\mathrm{7}} }=−{i}\frac{\mathrm{5}}{\mathrm{32}}\:{and} \\ $$$$\int_{−\infty} ^{+\infty} {f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi\left(−{i}\frac{\mathrm{5}}{\mathrm{32}}\right)=\:\frac{\mathrm{10}\pi}{\mathrm{32}}=\:\frac{\mathrm{5}\pi}{\mathrm{16}}\:.\:\:\:{finally} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} {f}\left({z}\right){dz}=\:\frac{\mathrm{5}\pi}{\mathrm{32}}\:. \\ $$