Menu Close

find-0-dx-1-x-2-n-with-n-integr-and-n-1-




Question Number 31296 by abdo imad last updated on 05/Mar/18
find  ∫_0 ^(+∞)  (dx/((1+x^2 )^n ))  with n integr and n≥1 .
find0+dx(1+x2)nwithnintegrandn1.
Commented by NECx last updated on 07/Mar/18
thats the greatest lie of the century.
thatsthegreatestlieofthecentury.
Commented by abdo imad last updated on 06/Mar/18
let put I_n =∫_0 ^∞   (dx/((1+x^2 )^n )) ⇒ I_n =(1/2) ∫_(−∞) ^(+∞)    (dx/((1+x^2 )^n ))   let put ϕ(z)= (1/((1+z^2 )^n )) we have ϕ(z)=  (1/((z−i)^n (z+i)^n )) so  thepoles of f are i and −i (poles with ordre n)  ∫_(−∞) ^(+∞) ϕ(z)dz=2iπ Res(ϕ,i)  but  Res(ϕ,i)=lim_(z→i)  (1/((n−1)!))( (z−i)^n f(z))^((n−1))   =lim_(z→i)   (1/((n−1)!))(   (1/((z+i)^n )))^((n−1))  first let find  ((z+i)^p )^((k))  with k ≤p  (z+i)^p )^((1)) =p(z+i)^(p−1)    ,((z+i)^p )^((2)) =p(p−1)(z+i)^(p−2) ⇒  ((z+i)^p )^((k)) =p(p−1)...(p−k+1)(z+i)^(p−k)  and  for p=−n and k=n−1 weget  ((z+i)^(−n) )^((n−1)) =(−n)(−n−1)....(−n −n+1+1)(z+i)^(−n−n+1)   =(−1)^(n−1) n(n+1)(n+2)....(2n−2)(z+i)^(−2n+1)   Res(ϕ,i)= (1/((n−1)!)) (−1)^(n−1) n(n+1)(n+2)...(2n−2)(2i)^(−2n+1)   =(((−1)^(n−1) )/(2^(2n−1) (n−1)! i^(2n−1) )) n(n+1)(n+2)....(2n−2)  = ((−i)/2^(2n−1) ) (1/((n−1)!))n(n+1)(n+2)...(2n −2)⇒  I_n =(1/2)2iπ ((−i)/2^(2n−1) )(1/((n−1)!))n(n+1)(n+2)...(2n−2)  I_n = (π/2^(2n−1) ) n(n+1)(n+2)....(2n−2)=((π(2n−2)!)/(((n−1)!)^2  2^(2n−1) )) .
letputIn=0dx(1+x2)nIn=12+dx(1+x2)nletputφ(z)=1(1+z2)nwehaveφ(z)=1(zi)n(z+i)nsothepolesoffareiandi(poleswithordren)+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(n1)!((zi)nf(z))(n1)=limzi1(n1)!(1(z+i)n)(n1)firstletfind((z+i)p)(k)withkp(z+i)p)(1)=p(z+i)p1,((z+i)p)(2)=p(p1)(z+i)p2((z+i)p)(k)=p(p1)(pk+1)(z+i)pkandforp=nandk=n1weget((z+i)n)(n1)=(n)(n1).(nn+1+1)(z+i)nn+1=(1)n1n(n+1)(n+2).(2n2)(z+i)2n+1Res(φ,i)=1(n1)!(1)n1n(n+1)(n+2)(2n2)(2i)2n+1=(1)n122n1(n1)!i2n1n(n+1)(n+2).(2n2)=i22n11(n1)!n(n+1)(n+2)(2n2)In=122iπi22n11(n1)!n(n+1)(n+2)(2n2)In=π22n1n(n+1)(n+2).(2n2)=π(2n2)!((n1)!)222n1.
Commented by NECx last updated on 07/Mar/18
wow..... Prof Abdo Imad,I′m so  amased by the questions you  solve.Thanks for you help on the  platform.
wow..ProfAbdoImad,Imsoamasedbythequestionsyousolve.Thanksforyouhelpontheplatform.
Commented by NECx last updated on 07/Mar/18
If I may ask,which aspect of  integration is this  ?
IfImayask,whichaspectofintegrationisthis?
Commented by NECx last updated on 07/Mar/18
this is because I always notice  that you always apply complex  values to your integrals.
thisisbecauseIalwaysnoticethatyoualwaysapplycomplexvaluestoyourintegrals.
Commented by prof Abdo imad last updated on 07/Mar/18
its only integration by residus theorem....
itsonlyintegrationbyresidustheorem.
Commented by prof Abdo imad last updated on 07/Mar/18
I am given all my time to integration because  its contain all comsepts of analysis...
Iamgivenallmytimetointegrationbecauseitscontainallcomseptsofanalysis
Commented by NECx last updated on 07/Mar/18
wow.... i′m most grateful
wow.immostgrateful
Commented by NECx last updated on 07/Mar/18
I′ve heard of the theorem : cauchy  residue theorem.It has to do with  comlex analysis.Though its not  in Class XI or XII syllabus.u
Iveheardofthetheorem:cauchyresiduetheorem.Ithastodowithcomlexanalysis.ThoughitsnotinClassXIorXIIsyllabus.u
Commented by rahul 19 last updated on 07/Mar/18
so u r also  a prof ?
souralsoaprof?
Commented by rahul 19 last updated on 07/Mar/18
then?
then?

Leave a Reply

Your email address will not be published. Required fields are marked *