find-0-dx-1-x-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 29003 by abdo imad last updated on 03/Feb/18 find∫0∞dx1+x3. Commented by abdo imad last updated on 03/Feb/18 letputI=∫0∞dx1+x3letputx3=t⇔x=t13andI=∫0∞11+t13t13−1dt=13∫0∞t13−11+tdtbutweknowthat∫0∞ta−11+tdt=πsin(πa)with0<a<1duetothat∫0∞t13−11+tdt=πsin(π3)=π32=2π3⇒I=2π33. Answered by sma3l2996 last updated on 03/Feb/18 wehave11+x3=1(x+1)(x2−x+1)=a1+x+bx+cx2−x+1a=13,c=23,b=−1311+x3=13(11+x−x−2x2−x+1)so∫0∞dx1+x3=13∫0∞(1x+1−2x−42(x2−x+1))dx=13(limlnx→∞(x+1)−12∫0∞2x−1−3x2−x+1dx)=13limx→∞(ln(x+1)−12ln(x2−x+1))−12∫0∞dxx2−x+1∫0∞dxx2−x+1=∫0∞dx(x−12)2+34=43∫0∞dx(2x−13)2+1t=2x−13⇒dx=32dt∫0∞dxx2−x+1=233∫0∞dtt2+1=233(limarctantx→∞−0)=3π3A=limx→∞(ln(x+1)−12ln(x2−x+1))=limx→∞(ln(x(1+1x))−12ln(x2(1−1x+1x2))=limx→∞(lnx+ln(1+1/x)−ln(x)−12ln(1−1/x+1/x2))=limx→∞(ln(1+1x)−12ln(1−1x+1x2))=0so∫0∞dx1+x3=13×(0)−12∫0∞dxx2−x+1=−12×3π3=−23π3 Commented by abdo imad last updated on 03/Feb/18 wehave11+x3>0∀x⩾0so∫0∞dx1+x3>0sohowdoyoufindangativevaluesir?… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-0-cos-t-1-t-4-dt-Next Next post: Question-29007 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.