Menu Close

find-0-dx-1-x-3-




Question Number 29003 by abdo imad last updated on 03/Feb/18
find ∫_0 ^∞    (dx/(1+x^3 )) .
find0dx1+x3.
Commented by abdo imad last updated on 03/Feb/18
let put I= ∫_0 ^∞   (dx/(1+x^3 ))  let put x^3 =t ⇔x=t^(1/3)   and  I= ∫_0 ^∞  (1/(1+t)) (1/3)t^((1/3)−1)  dt=(1/3) ∫_0 ^∞  (t^((1/3)−1) /(1+t))dt  but we know that  ∫_0 ^∞  (t^(a−1) /(1+t))dt= (π/(sin(πa))) with0<a<1 due to that  ∫_0 ^∞  (t^((1/3)−1) /(1+t))dt= (π/(sin((π/3))))= (π/((√3)/2))=((2π)/( (√3))) ⇒ I= ((2π)/(3(√3)))  .
letputI=0dx1+x3letputx3=tx=t13andI=011+t13t131dt=130t1311+tdtbutweknowthat0ta11+tdt=πsin(πa)with0<a<1duetothat0t1311+tdt=πsin(π3)=π32=2π3I=2π33.
Answered by sma3l2996 last updated on 03/Feb/18
we have (1/(1+x^3 ))=(1/((x+1)(x^2 −x+1)))=(a/(1+x))+((bx+c)/(x^2 −x+1))  a=(1/3)  ,  c=(2/3) , b=−(1/3)  (1/(1+x^3 ))=(1/3)((1/(1+x))−((x−2)/(x^2 −x+1)))  so ∫_0 ^∞ (dx/(1+x^3 ))=(1/3)∫_0 ^∞ ((1/(x+1))−((2x−4)/(2(x^2 −x+1))))dx  =(1/3)(lim_(x→∞) ln(x+1)−(1/2)∫_0 ^∞ ((2x−1−3)/(x^2 −x+1))dx)  =(1/3)lim_(x→∞) (ln(x+1)−(1/2)ln(x^2 −x+1))−(1/2)∫_0 ^∞ (dx/(x^2 −x+1))  ∫_0 ^∞ (dx/(x^2 −x+1))=∫_0 ^∞ (dx/((x−(1/2))^2 +(3/4)))=(4/3)∫_0 ^∞ (dx/((((2x−1)/( (√3))))^2 +1))  t=((2x−1)/( (√3)))⇒dx=((√3)/2)dt  ∫_0 ^∞ (dx/(x^2 −x+1))=((2(√3))/3)∫_0 ^∞ (dt/(t^2 +1))=((2(√3))/3)(lim_(x→∞) arctant−0)  =(((√3)π)/3)  A=lim_(x→∞) (ln(x+1)−(1/2)ln(x^2 −x+1))  =lim_(x→∞) (ln(x(1+(1/x)))−(1/2)ln(x^2 (1−(1/x)+(1/x^2 )))  =lim_(x→∞) (lnx+ln(1+1/x)−ln(x)−(1/2)ln(1−1/x+1/x^2 ))  =lim_(x→∞) (ln(1+(1/x))−(1/2)ln(1−(1/x)+(1/x^2 )))=0  so  ∫_0 ^∞ (dx/(1+x^3 ))=(1/3)×(0)−(1/2)∫_0 ^∞ (dx/(x^2 −x+1))=−(1/2)×(((√3)π)/( (√3)))  =−((2(√3)π)/3)
wehave11+x3=1(x+1)(x2x+1)=a1+x+bx+cx2x+1a=13,c=23,b=1311+x3=13(11+xx2x2x+1)so0dx1+x3=130(1x+12x42(x2x+1))dx=13(limlnx(x+1)1202x13x2x+1dx)=13limx(ln(x+1)12ln(x2x+1))120dxx2x+10dxx2x+1=0dx(x12)2+34=430dx(2x13)2+1t=2x13dx=32dt0dxx2x+1=2330dtt2+1=233(limarctantx0)=3π3A=limx(ln(x+1)12ln(x2x+1))=limx(ln(x(1+1x))12ln(x2(11x+1x2))=limx(lnx+ln(1+1/x)ln(x)12ln(11/x+1/x2))=limx(ln(1+1x)12ln(11x+1x2))=0so0dx1+x3=13×(0)120dxx2x+1=12×3π3=23π3
Commented by abdo imad last updated on 03/Feb/18
we have  (1/(1+x^3 ))>0  ∀ x≥0   so ∫_0 ^∞ (dx/(1+x^3 ))>0 so how do you  find a ngative value sir ?...
wehave11+x3>0x0so0dx1+x3>0sohowdoyoufindangativevaluesir?

Leave a Reply

Your email address will not be published. Required fields are marked *