Menu Close

find-0-e-t-2-1-t-2-dt-




Question Number 37634 by math khazana by abdo last updated on 16/Jun/18
find ∫_0 ^(+∞)   e^(−(t^2  +(1/t^2 ))) dt
find0+e(t2+1t2)dt
Commented by prof Abdo imad last updated on 17/Jun/18
let I  = ∫_0 ^∞   e^(−(t^2  +(1/t^2 ))) dt  2I = ∫_(−∞) ^∞    e^(−{ ( t−(1/t))^2  +2}) dt  = e^(−2)   ∫_(−∞) ^(+∞)   e^(−(t−(1/t))^2 ) dt  changement  t−(1/t)=x give t^2  −1=xt ⇒t^2  −xt−1=0  Δ =x^2  +4 ⇒ t_1 =((x +(√(x^2  +4)))/2)  and  t_2 = ((x−(√(x^2  +4)))/2)  let take t =((x +(√(x^2 +4)))/2) ⇒   dt =(1/2)( 1+ (x/( (√(x^2  +4))))) dx⇒  2I = (e^(−2) /2)∫_(−∞) ^(+∞)   e^(−x^2 ) ( 1+(x/( (√(x^2  +4)))))dx  =(e^(−2) /2)∫_(−∞) ^(+∞)   e^(−x^2 ) dx   +(e^(−2) /2) ∫_(−∞) ^(+∞)    ((x e^(−x^2 ) )/( (√(x^2  +4))))dx  =(((√π) e^(−2) )/2) +0 because  the function  x→ ((x e^(−x^2 ) )/( (√(x^2  +4)))) is odd ⇒  I  = ((e^(−2) (√π))/4) .
letI=0e(t2+1t2)dt2I=e{(t1t)2+2}dt=e2+e(t1t)2dtchangementt1t=xgivet21=xtt2xt1=0Δ=x2+4t1=x+x2+42andt2=xx2+42lettaket=x+x2+42dt=12(1+xx2+4)dx2I=e22+ex2(1+xx2+4)dx=e22+ex2dx+e22+xex2x2+4dx=πe22+0becausethefunctionxxex2x2+4isoddI=e2π4.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18
=(1/2)∫_0 ^∞ (1−(1/t^2 )+1+(1/(t^2  )))e^(−(t^2 +(1/t^2 ))) dt  =(1/2)∫_0 ^∞ (1−(1/t^2 ))e^(−{(t+(1/t))^2 −2}) dt+     (1/2)∫_0 ^∞ (1+(1/t^2 ))e^(−{(t−(1/t))^2 +2}) dt  =(1/2)∫_0 ^∞ (1−(1/t^2 ))e^(−{(t+(1/t))^2 }) ×e^2 dt+    (1/2)∫_0 ^∞ (1+(1/t^2 ))e^(−{(t−(1/t))^2 }) ×e^(−2) dt  =(e^2 /2)∫_∞ ^∞ e^(−k_1 ^2 )  dk_1   +(e^(−2) /2)∫_(−∞) ^∞ e^(−k_2 ^2 ) dk_(2 )   so first intregsl  value=0  2nd intregal=(e^(−2) /2)×2∫_0 ^∞ e^(−k_2 ^2 ) dk_2   =e^(−2) ×(((√Π) )/2)  formula∫_0 ^∞ e^(−x^2 ) dx=(((√Π) )/2)  i have done a small error marking with red  and later corrected...this red marked 2 should  not be there..correct answer...(e^(−2) /2)×((√Π)/2)
=120(11t2+1+1t2)e(t2+1t2)dt=120(11t2)e{(t+1t)22}dt+120(1+1t2)e{(t1t)2+2}dt=120(11t2)e{(t+1t)2}×e2dt+120(1+1t2)e{(t1t)2}×e2dt=e22ek12dk1+e22ek22dk2sofirstintregslvalue=02ndintregal=e22×20ek22dk2=e2×Π2formula0ex2dx=Π2ihavedoneasmallerrormarkingwithredandlatercorrectedthisredmarked2shouldnotbethere..correctanswere22×Π2

Leave a Reply

Your email address will not be published. Required fields are marked *