find-0-e-t-2-1-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37634 by math khazana by abdo last updated on 16/Jun/18 find∫0+∞e−(t2+1t2)dt Commented by prof Abdo imad last updated on 17/Jun/18 letI=∫0∞e−(t2+1t2)dt2I=∫−∞∞e−{(t−1t)2+2}dt=e−2∫−∞+∞e−(t−1t)2dtchangementt−1t=xgivet2−1=xt⇒t2−xt−1=0Δ=x2+4⇒t1=x+x2+42andt2=x−x2+42lettaket=x+x2+42⇒dt=12(1+xx2+4)dx⇒2I=e−22∫−∞+∞e−x2(1+xx2+4)dx=e−22∫−∞+∞e−x2dx+e−22∫−∞+∞xe−x2x2+4dx=πe−22+0becausethefunctionx→xe−x2x2+4isodd⇒I=e−2π4. Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18 =12∫0∞(1−1t2+1+1t2)e−(t2+1t2)dt=12∫0∞(1−1t2)e−{(t+1t)2−2}dt+12∫0∞(1+1t2)e−{(t−1t)2+2}dt=12∫0∞(1−1t2)e−{(t+1t)2}×e2dt+12∫0∞(1+1t2)e−{(t−1t)2}×e−2dt=e22∫∞∞e−k12dk1+e−22∫−∞∞e−k22dk2sofirstintregslvalue=02ndintregal=e−22×2∫0∞e−k22dk2=e−2×Π2formula∫0∞e−x2dx=Π2ihavedoneasmallerrormarkingwithredandlatercorrected…thisredmarked2shouldnotbethere..correctanswer…e−22×Π2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-168707Next Next post: let-a-gt-0-find-the-value-of-f-a-0-e-t-2-a-t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.