Menu Close

find-0-e-t-ln-1-e-2t-dt-




Question Number 36799 by abdo.msup.com last updated on 05/Jun/18
find ∫_0 ^∞    e^t ln(1+e^(−2t) )dt .
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{{t}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right){dt}\:. \\ $$
Commented by math khazana by abdo last updated on 11/Jun/18
let I = ∫_0 ^∞    e^t  ln(1+e^(−2t) )dt by parts  u^′ =e^t   and v =ln(1+e^(−2t) ) ⇒  I = [ e^t ln(1+e^(−2t) )]_0 ^(+∞)  −∫_0 ^∞  e^t   ((−2 e^(−2t) )/(1+e^(−2t) ))dt  =−ln(2) +2 ∫_0 ^∞    (e^(−t) /(1+e^(−2t) )) dt but  ∫_0 ^∞     (e^(−t) /(1+e^(−2t) )) dt =_(e^t =x)  ∫_1 ^(+∞)      (1/(x(1+(1/x^2 )))) (dx/x)  = ∫_1 ^(+∞)     (dx/(x^2  +1)) =[arctanx]_1 ^(+∞) =(π/2) −(π/4) =(π/4) ⇒  ★I = −ln(2) +(π/2) ★
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{{t}} \:{ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right){dt}\:{by}\:{parts} \\ $$$${u}^{'} ={e}^{{t}} \:\:{and}\:{v}\:={ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right)\:\Rightarrow \\ $$$${I}\:=\:\left[\:{e}^{{t}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{t}} \right)\right]_{\mathrm{0}} ^{+\infty} \:−\int_{\mathrm{0}} ^{\infty} \:{e}^{{t}} \:\:\frac{−\mathrm{2}\:{e}^{−\mathrm{2}{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}} }{dt} \\ $$$$=−{ln}\left(\mathrm{2}\right)\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}} }\:{dt}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}} }\:{dt}\:=_{{e}^{{t}} ={x}} \:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{1}}{{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}\:\frac{{dx}}{{x}} \\ $$$$=\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:=\left[{arctanx}\right]_{\mathrm{1}} ^{+\infty} =\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\:=\frac{\pi}{\mathrm{4}}\:\Rightarrow \\ $$$$\bigstar{I}\:=\:−{ln}\left(\mathrm{2}\right)\:+\frac{\pi}{\mathrm{2}}\:\bigstar \\ $$
Answered by MJS last updated on 06/Jun/18
∫e^t ln(1+e^(−2t) )dt=             [((∫f′g=fg−∫fg′)),((f′=e^t  ⇒ f=e^t )),((g=ln(1+e^(−2t) ) ⇒ g′=−((2e^(−2t) )/(1+e^(−2t) )))) ]  =e^t ln(1+e^(−2t) )−2∫−(e^(−t) /(1+e^(−2t) ))dt=            [u=−e^t  → dt=−e^t du]  =e^t ln(1+e^(−2t) )−2∫(u/(1+u^2 ))du=  =e^t ln(1+e^(−2t) )−2arctan u=  =e^t ln(1+e^(−2t) )−2arctan −e^t =  =e^t ln(1+e^(−2t) )+2arctan e^t +C    ∫_0 ^∞ e^t ln(1+e^(−2t) )dt=(π/2)−ln 2
$$\int\mathrm{e}^{{t}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right){dt}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\begin{bmatrix}{\int{f}'{g}={fg}−\int{fg}'}\\{{f}'=\mathrm{e}^{{t}} \:\Rightarrow\:{f}=\mathrm{e}^{{t}} }\\{{g}=\mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right)\:\Rightarrow\:{g}'=−\frac{\mathrm{2e}^{−\mathrm{2}{t}} }{\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} }}\end{bmatrix} \\ $$$$=\mathrm{e}^{{t}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right)−\mathrm{2}\int−\frac{\mathrm{e}^{−{t}} }{\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} }{dt}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{u}=−\mathrm{e}^{{t}} \:\rightarrow\:{dt}=−\mathrm{e}^{{t}} {du}\right] \\ $$$$=\mathrm{e}^{{t}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right)−\mathrm{2}\int\frac{{u}}{\mathrm{1}+{u}^{\mathrm{2}} }{du}= \\ $$$$=\mathrm{e}^{{t}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right)−\mathrm{2arctan}\:{u}= \\ $$$$=\mathrm{e}^{{t}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right)−\mathrm{2arctan}\:−\mathrm{e}^{{t}} = \\ $$$$=\mathrm{e}^{{t}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right)+\mathrm{2arctan}\:\mathrm{e}^{{t}} +{C} \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{{t}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2}{t}} \right){dt}=\frac{\pi}{\mathrm{2}}−\mathrm{ln}\:\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *