Question Number 31092 by abdo imad last updated on 02/Mar/18
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\:. \\ $$
Commented by abdo imad last updated on 07/Mar/18
$${let}\:{introduce}\:{the}\:{parametric}\:{function} \\ $$$${f}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\:{with}\:{t}\geqslant\mathrm{0}\:{wehave} \\ $$$${f}^{'} \left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}}{\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{tx}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{tx}^{\mathrm{2}} }\:=_{\sqrt{{t}}{x}={u}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{{t}}}=\frac{\pi}{\mathrm{2}\sqrt{{t}}}\:\:{now}\:{let}\:{decompose} \\ $$$${F}\left({t}\right)=\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}=\frac{{ax}+{b}}{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{cx}+{d}}{{tx}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${F}\left(−{x}\right)={F}\left({x}\right)\Rightarrow{F}\left({x}\right)=\frac{−{ax}+{b}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}\:+\frac{−{cx}\:+{d}}{{tx}^{\mathrm{2}} +\mathrm{1}}\Rightarrow{a}={c}=\mathrm{0}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{{b}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}\:+\frac{{d}}{{t}^{} {x}^{\mathrm{2}} +\mathrm{1}}\:{we}\:{have}\:{lim}_{{x}\rightarrow+\infty} {x}^{\mathrm{2}} {F}\left({x}\right)=\mathrm{0} \\ $$$$=\frac{{b}}{\mathrm{2}}\:+\frac{{d}}{{t}}=\mathrm{0}\Rightarrow\mathrm{2}{d}\:+{tb}=\mathrm{0}\:\Rightarrow{d}=−\frac{{t}}{\mathrm{2}}{b}\Rightarrow \\ $$$${F}\left({t}\right)=\:\frac{{b}}{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}\:−\frac{{t}}{\mathrm{2}}\:\frac{{b}}{{tx}^{\mathrm{2}} +\mathrm{1}}\:\:{wehave}\:{F}\left(\mathrm{0}\right)=\mathrm{1}={b}\:−\frac{{tb}}{\mathrm{2}}\:\Rightarrow \\ $$$$\left(\mathrm{1}−\frac{{t}}{\mathrm{2}}\right){b}=\mathrm{1}\:\Rightarrow\:\left(\mathrm{2}−{t}\right){b}=\mathrm{2}\:\Rightarrow{b}=\:\frac{\mathrm{2}}{\mathrm{2}−{t}}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{2}}{\left(\mathrm{2}−{t}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)}\:−\:\:\frac{{t}}{\left(\mathrm{2}−{t}\right)\left({tx}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}−{t}}\left(\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}\:−\frac{{t}}{{tx}^{\mathrm{2}} \:+\mathrm{1}}\right)\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{F}\left({x}\right){dx}=\:\frac{\mathrm{2}}{\mathrm{2}−{t}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}\:−\frac{{t}}{\mathrm{2}−{t}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{tx}^{\mathrm{2}} +\mathrm{1}}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}=_{\sqrt{\mathrm{2}}{x}={u}} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{\mathrm{2}}}=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}. \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{tx}^{\mathrm{2}} \:+\mathrm{1}}=\frac{\pi}{\mathrm{2}\sqrt{{t}}}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} {F}\left({x}\right){dx}=\:\frac{\pi}{\:\sqrt{\mathrm{2}}\left(\mathrm{2}−{t}\right)}\:−\frac{{t}}{\mathrm{2}−{t}}\:\frac{\pi}{\mathrm{2}\sqrt{{t}}} \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{2}}\left(\mathrm{2}−{t}\right)}\:−\frac{\pi\sqrt{{t}}}{\mathrm{2}\left(\mathrm{2}−{t}\right)}\:\Rightarrow{f}^{'} \left({t}\right)=\frac{\pi}{\mathrm{4}\sqrt{{t}}}\:−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}\left(\mathrm{2}−{t}\right)}\:+\frac{\pi\sqrt{{t}}}{\mathrm{4}\left(\mathrm{2}−{t}\right)} \\ $$$$=\frac{\pi}{\mathrm{4}}\left(\:\:\:\frac{\mathrm{1}}{\:\sqrt{{t}}}\:−\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{2}}\left(\mathrm{2}−{t}\right)}\:+\frac{\sqrt{{t}}}{\mathrm{2}−{t}}\right)\Rightarrow \\ $$$${f}\left({t}\right)=\frac{\pi}{\mathrm{4}}\int\:\frac{{dt}}{\:\sqrt{{t}}}\:−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\int\:\:\frac{{dt}}{\mathrm{2}−{t}}\:+\frac{\pi}{\mathrm{4}}\int\:\:\frac{\sqrt{{t}}}{\mathrm{2}−{t}}{dt}\:+\lambda \\ $$$$=\frac{\pi}{\mathrm{2}}\sqrt{{t}}\:\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\mathrm{2}−{t}\mid\:+\frac{\pi}{\mathrm{4}}\int\:\:\:\:\frac{{u}}{\mathrm{2}−{u}^{\mathrm{2}} }\:\mathrm{2}{udu}\:+\lambda \\ $$$$\frac{\pi}{\mathrm{4}}\int\:\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} }{\mathrm{2}−{u}^{\mathrm{2}} }{du}=\frac{\pi}{\mathrm{2}}\:\int\:\frac{{u}^{\mathrm{2}} }{\mathrm{2}−{u}^{\mathrm{2}} }{du}\:{and} \\ $$$$\int\:\:\frac{{u}^{\mathrm{2}} }{\mathrm{2}−{u}^{\mathrm{2}} }{du}=\:−\int\:\:\frac{\mathrm{2}−{u}^{\mathrm{2}} \:−\mathrm{2}}{\mathrm{2}−\boldsymbol{{u}}^{\mathrm{2}} }\boldsymbol{{du}}=−\boldsymbol{{u}}\:\:+\mathrm{2}\int\:\:\:\frac{{du}}{\mathrm{2}−{u}^{\mathrm{2}} } \\ $$$$=−{u}\:\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\int\left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:−{u}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:+{u}}\right)=−\sqrt{{t}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{ln}\mid\frac{\sqrt{\mathrm{2}}\:+\sqrt{{t}}}{\:\sqrt{\mathrm{2}}\:−\sqrt{{t}}}\mid\:\Rightarrow \\ $$$${f}\left({t}\right)=\frac{\pi}{\mathrm{2}}\sqrt{{t}}\:\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\mathrm{2}−{t}\mid\:+\frac{\pi}{\mathrm{2}}\left(−\sqrt{{t}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{ln}\mid\frac{\sqrt{\mathrm{2}}\:+\sqrt{{t}}}{\:\sqrt{\mathrm{2}}\:−\sqrt{{t}}}\mid\right)+\lambda \\ $$$${f}\left({t}\right)=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\mathrm{2}−{t}\mid\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\frac{\sqrt{\mathrm{2}}\:+\sqrt{{t}}}{\:\sqrt{\mathrm{2}}\:−\sqrt{{t}}}\mid\:+\lambda\:{we}\:{have} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}=\frac{\pi{ln}\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}\:+\lambda\:\Rightarrow\lambda=−\frac{\pi{ln}\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}\:{finally} \\ $$$${f}\left({t}\right)=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\mathrm{2}−{t}\mid\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\frac{\sqrt{\mathrm{2}}\:+\sqrt{{t}}}{\:\sqrt{\mathrm{2}}\:−\sqrt{{t}}}\mid\:−\frac{\pi{ln}\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}\:{let}\:{take}\:{t}=\mathrm{4} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mathrm{2}\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\frac{\sqrt{\mathrm{2}}\:+\mathrm{2}}{\:\sqrt{\mathrm{2}}\:−\mathrm{2}}\mid\:−\frac{\pi{ln}\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}\:. \\ $$