Question Number 108821 by mathmax by abdo last updated on 19/Aug/20
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Answered by mathmax by abdo last updated on 20/Aug/20
$$\mathrm{for}\:\mathrm{this}\:\mathrm{type}\:\mathrm{of}\:\mathrm{integral}\:\:\mathrm{i}\:\mathrm{use}\:\mathrm{the}\:\mathrm{formulae} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{q}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{x}\right)\mathrm{dx}\:=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Re}\left(\sum_{\mathrm{i}} \:\mathrm{Res}\left(\mathrm{q}\left(\mathrm{z}\right)\mathrm{ln}^{\mathrm{2}} \mathrm{z}\:,\mathrm{a}_{\mathrm{i}} \right)\right. \\ $$$$\mathrm{with}\:\mathrm{q}\left(\mathrm{z}\right)=\frac{\mathrm{1}}{\left(\mathrm{z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{let}\:\mathrm{w}\left(\mathrm{z}\right)\:=\frac{\mathrm{ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\:\mathrm{poles}\:\mathrm{of}\:\mathrm{w}? \\ $$$$\mathrm{w}\left(\mathrm{z}\right)\:=\frac{\mathrm{ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} \left(\mathrm{z}+\mathrm{i}\right)^{\mathrm{2}} }\:\:\mathrm{so}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{are}\:\overset{−} {+}\mathrm{i}\:\left(\mathrm{doubles}\right) \\ $$$$\mathrm{Res}\left(\mathrm{w},\mathrm{i}\right)\:=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} \mathrm{w}\left(\mathrm{z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\:\left\{\frac{\mathrm{ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}+\mathrm{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \:=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\frac{\mathrm{2}\frac{\mathrm{lnz}}{\mathrm{z}}\left(\mathrm{z}+\mathrm{i}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{z}+\mathrm{i}\right)\mathrm{ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}+\mathrm{i}\right)^{\mathrm{4}} } \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\frac{\mathrm{2}\frac{\mathrm{lnz}}{\mathrm{z}}\left(\mathrm{z}+\mathrm{i}\right)−\mathrm{2ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}+\mathrm{i}\right)^{\mathrm{3}} }\:=\frac{\frac{\mathrm{4i}}{\mathrm{i}}\mathrm{ln}\left(\mathrm{i}\right)−\mathrm{2ln}^{\mathrm{2}} \left(\mathrm{i}\right)}{\left(\mathrm{2i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{4}\left(\frac{\mathrm{i}\pi}{\mathrm{2}}\right)−\mathrm{2}\left(\frac{\mathrm{i}\pi}{\mathrm{2}}\right)^{\mathrm{2}} }{−\mathrm{8i}}\:=\frac{\mathrm{2i}\pi+\frac{\pi^{\mathrm{2}} }{\mathrm{2}}}{−\mathrm{8i}}\:=−\frac{\pi}{\mathrm{4}}+\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\mathrm{i} \\ $$$$\mathrm{Res}\left(\mathrm{w},−\mathrm{i}\right)\:=\mathrm{lim}_{\mathrm{z}\rightarrow−\mathrm{i}} \:\:\left\{\frac{\mathrm{ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow−\mathrm{i}} \:\:\:\:\frac{\mathrm{2}\frac{\mathrm{lnz}}{\mathrm{z}}\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{z}−\mathrm{i}\right)\mathrm{ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{4}} } \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow−\mathrm{i}} \:\:\:\:\frac{\mathrm{2}\frac{\mathrm{lnz}}{\mathrm{z}}\left(\mathrm{z}−\mathrm{i}\right)−\mathrm{2ln}^{\mathrm{2}} \mathrm{z}}{\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{3}} }\:=\frac{\frac{−\mathrm{4i}}{−\mathrm{i}}\mathrm{ln}\left(−\mathrm{i}\right)−\mathrm{2ln}^{\mathrm{2}} \left(−\mathrm{i}\right)}{\left(−\mathrm{2i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{4}\left(−\frac{\mathrm{i}\pi}{\mathrm{2}}\right)−\mathrm{2}\left(−\frac{\mathrm{i}\pi}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{8i}}\:=\frac{−\mathrm{2i}\pi\:+\frac{\pi^{\mathrm{2}} }{\mathrm{2}}}{\mathrm{8i}}\:=−\frac{\pi}{\mathrm{4}}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\mathrm{i}\:\Rightarrow \\ $$$$\Sigma\:\mathrm{Re}\left(…\right)\:=−\frac{\pi}{\mathrm{2}}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}\:=−\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\pi}{\mathrm{2}}\right)\:=\frac{\pi}{\mathrm{4}} \\ $$