Menu Close

find-0-lnx-x-2-a-2-dx-2-find-the-value-of-0-lnx-x-2-a-2-3-




Question Number 31102 by abdo imad last updated on 02/Mar/18
find ∫_0 ^(+∞)    ((lnx)/(x^2  +a^2 ))dx  2) find the value of ∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 )) .
find0+lnxx2+a2dx2)findthevalueof0lnx(x2+a2)3.
Commented by abdo imad last updated on 05/Mar/18
let put f(a)= ∫_0 ^∞   ((lnx)/(x^2  +a^2 ))dx  ch.x=at  with a>0 give  f(a)=∫_0 ^∞  ((lna +lnt)/(a^2 (1+t^2 )))dt=((lna)/a^2 )∫_0 ^∞  (dt/(1+t^2 )) +(1/a^2 )∫_0 ^∞  ((lnt)/(1+t^2 ))dt but  we have proved that ∫_0 ^∞  ((lnt)/(1+t^2 ))dt=0 ⇒  f(a)= ((πlna)/(2a^2 ))  2) we have f^′ (a)=−2a∫_0 ^∞  ((lnx)/((x^2  +a^2 )^2 ))dx ⇒  ∫_0 ^∞   ((lnx)/((x^(2 )  +a^2 )^2 ))=((−1)/(2a))f^′ (a)= ((−πlna)/(4a^3 )) .
letputf(a)=0lnxx2+a2dxch.x=atwitha>0givef(a)=0lna+lnta2(1+t2)dt=lnaa20dt1+t2+1a20lnt1+t2dtbutwehaveprovedthat0lnt1+t2dt=0f(a)=πlna2a22)wehavef(a)=2a0lnx(x2+a2)2dx0lnx(x2+a2)2=12af(a)=πlna4a3.
Commented by abdo imad last updated on 05/Mar/18
(d/da)(((−f^′ (a))/(2a)))= ∫_0 ^∞  ((−2 2a(x^2  +a^2 ))/((x^2  +a^2 )^4 ))lnxdx=−4a ∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 ))dx  ⇒∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 ))dx=((−1)/(4a))(∂/∂a)( ((−πlna)/(4a^3 )))  =(π/(16a))(((lna)/a^3 ))^′ =(π/(16a))( ((a^2  −3a^2 lna)/a^6 ))=((πa^2 (1−3lna))/(16 a^7 ))  =((π(1−3lna))/(16 a^4 )) .
dda(f(a)2a)=022a(x2+a2)(x2+a2)4lnxdx=4a0lnx(x2+a2)3dx0lnx(x2+a2)3dx=14aa(πlna4a3)=π16a(lnaa3)=π16a(a23a2lnaa6)=πa2(13lna)16a7=π(13lna)16a4.

Leave a Reply

Your email address will not be published. Required fields are marked *