Question Number 79946 by mr W last updated on 29/Jan/20
![Find ∫_0 ^( n) [(x)^(1/3) ]dx=? in terms of n. (n∈N)](https://www.tinkutara.com/question/Q79946.png)
Answered by key of knowledge last updated on 29/Jan/20
![⌊^3 (√n)⌋=a ∫_m^3 ^( (m+1)^3 ) [^3 (√x^3 )]dx=m∫_m^3 ^((m+1)^3 ) dx=3m^3 +3m^2 +m ∫_0 ^( n) [(x)^(1/3) ]dx=Σ_0 ^(a−1) (3m^3 +3m^2 +m)+∫_a^3 ^( n) [(√x^3 )]= Σ_0 ^(a−1) (3m^3 +3m^2 +m)+a(n−a^3 )](https://www.tinkutara.com/question/Q79952.png)
Commented by mr W last updated on 29/Jan/20

Commented by mr W last updated on 29/Jan/20

Commented by key of knowledge last updated on 29/Jan/20

Answered by mr W last updated on 29/Jan/20
![let h=⌊(n)^(1/3) ⌋ x=[0,1^3 ): [(x)^(1/3) ]=0 ⇒∫_0 ^1^3 [(x)^(1/3) ]dx=0×(1^3 −0) x=[1^3 ,2^3 ): [(x)^(1/3) ]=1⇒∫_0 ^1^3 [(x)^(1/3) ]dx=1×(2^3 −1^3 ) x=[2^3 ,3^3 ): [(x)^(1/3) ]=2⇒∫_1^3 ^2^3 [(x)^(1/3) ]dx=2×(3^3 −2^3 ) x=[3^3 ,4^3 ): [(x)^(1/3) ]=3⇒∫_2^3 ^3^3 [(x)^(1/3) ]dx=3×(4^3 −3^3 ) ... x=[(h−1)^3 ,h^3 ): [(x)^(1/3) ]=h−1⇒∫_((h−1)^3 ) ^h^3 [(x)^(1/3) ]dx=(h−1)×(h^3 −(h−1)^3 ) x=[h^3 ,n]: [(x)^(1/3) ]=h⇒∫_h^3 ^n [(x)^(1/3) ]dx=h×(n−h^3 ) ∫_0 ^( n) [(x)^(1/3) ]dx=Σ_(k=0) ^(h−1) ∫_k^3 ^((k+1)^3 ) [(x)^(1/3) ]dx+∫_h^3 ^n [(x)^(1/3) ]dx =Σ_(k=0) ^(h−1) {k[(k+1)^3 −k^3 ]}+h(n−h^3 ) =Σ_(k=1) ^(h−1) (3k^3 +3k^2 +k)+h(n−h^3 ) =3(((h−1)^2 h^2 )/4)+3(((h−1)h(2h−1))/6)+(((h−1)h)/2)+h(n−h^3 ) =((h^2 (h−1)(3h+1)+4h(n−h^3 ))/4) ⇒∫_0 ^( n) [(x)^(1/3) ]dx=nh−((h^2 (h+1)^2 )/4) example n=100: h=⌊((100))^(1/3) ⌋=4 ∫_0 ^( 100) [(x)^(1/3) ]dx=100×4−((4^2 ×5^2 )/4)=300](https://www.tinkutara.com/question/Q79962.png)