find-0-pi-2-dx-3-sinx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40141 by maxmathsup by imad last updated on 16/Jul/18 find∫0π2dx3+sinx Commented by maxmathsup by imad last updated on 19/Jul/18 letI=∫0π2dx3+sinxchangementtan(x2)=tgiveI=∫0113+2t1+t22dt1+t2=2∫01dt3+3t2+2t=2∫01dt3t2+2t+3but3t2+2t+3=3(t2+23t+1)=3(t2+23t+19+1−19)=3{(t+13)2+89}⇒I=23∫01dt(t+13)2+89=t+13=223u23∫1222189(1+u2)223du=42998∫1222du1+u2=22[arctanu]122⇒I=22{arctan(2)−arctan(12)}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-I-n-0-1-x-n-1-x-dx-1-calculate-I-0-and-I-1-2-prove-that-n-N-3-2n-I-n-2n-I-n-1-3-find-I-n-interms-of-n-Next Next post: calculate-pi-6-pi-6-1-tan-x-1-sin-2x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.