Menu Close

find-0-pi-2-dx-3-sinx-




Question Number 40141 by maxmathsup by imad last updated on 16/Jul/18
find  ∫_0 ^(π/2)       (dx/(3+sinx))
find0π2dx3+sinx
Commented by maxmathsup by imad last updated on 19/Jul/18
let  I  = ∫_0 ^(π/2)     (dx/(3+sinx))  changement tan((x/2))=t give  I  = ∫_0 ^1     (1/(3+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = 2 ∫_0 ^1     (dt/(3+3t^2  +2t))   =2 ∫_0 ^1     (dt/(3t^2  +2t +3))   but  3t^2 +2t +3  =3(t^2  +(2/3)t +1)  =3( t^2  +(2/3)t +(1/9) +1−(1/9)) =3{ (t+(1/3))^2  +(8/9)} ⇒  I =(2/3) ∫_0 ^1    (dt/((t+(1/3))^2  +(8/9)))  =_(t+(1/3)=((2(√2))/3)u)    (2/3) ∫_(1/(2(√2))) ^(√2)    (1/((8/9)(1+u^2 ))) ((2(√2))/3)du  =((4(√2))/9) (9/8) ∫_(1/(2(√2))) ^(√2)   (du/(1+u^2 )) =((√2)/2) [arctanu]_(1/( (√2))) ^(√2)   ⇒  I = ((√2)/2){ arctan((√2))−arctan((1/( (√2))))}.
letI=0π2dx3+sinxchangementtan(x2)=tgiveI=0113+2t1+t22dt1+t2=201dt3+3t2+2t=201dt3t2+2t+3but3t2+2t+3=3(t2+23t+1)=3(t2+23t+19+119)=3{(t+13)2+89}I=2301dt(t+13)2+89=t+13=223u231222189(1+u2)223du=429981222du1+u2=22[arctanu]122I=22{arctan(2)arctan(12)}.

Leave a Reply

Your email address will not be published. Required fields are marked *