Question Number 27502 by abdo imad last updated on 07/Jan/18
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right)}{{sin}^{\mathrm{2}} {t}}{dt}\:{with}\:−\mathrm{1}<{x}<\mathrm{1}\:. \\ $$
Commented by abdo imad last updated on 09/Jan/18
$${let}\:{put}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right)}{{sin}^{\mathrm{2}} {t}}{dt}\:{after}\:{verifying}\:{that}\:{f}\:{is} \\ $$$$\left.{derivable}\:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\:{we}\:{have}\:{f}^{,} \left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{1}+{xsin}^{\mathrm{2}} {t}}\right. \\ $$$$\:{because}\:{of}\:/{xsin}^{\mathrm{2}} {t}/<\mathrm{1}\: \\ $$$${f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\sum_{{n}=\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:{sin}^{\mathrm{2}{n}} {t}\right){dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{n}} {tdt}=\:\sum_{{n}=\mathrm{0}} ^{\propto} \left(−\mathrm{1}\right)^{{n}} {W}_{{n}} \:{x}^{{n}} \\ $$$${with}\:{W}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}{n}} {tdt}\:\:{and}\:{the}\:{value}\:{of}\:{W}_{{n}} \:{is}\:{known} \\ $$$$\left({walliss}\:{integral}\right) \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:{W}_{{n}} \:{x}^{{n}+\mathrm{1}} \:\:\:+\lambda \\ $$$$\lambda={f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow\:\:\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:{W}_{{n}} \:.{x}^{{n}+\mathrm{1}} \:\:\:. \\ $$$$ \\ $$