Menu Close

find-0-pi-2-ln-1-xsin-2-t-sin-2-t-dt-with-1-lt-x-lt-1-




Question Number 27502 by abdo imad last updated on 07/Jan/18
find  ∫_0 ^(π/2)    ((ln(1+xsin^2 t))/(sin^2 t))dt with −1<x<1 .
find0π2ln(1+xsin2t)sin2tdtwith1<x<1.
Commented by abdo imad last updated on 09/Jan/18
let put f(x)= ∫_0 ^(π/2)  ((ln(1+xsin^2 t))/(sin^2 t))dt after verifying that f is  derivable on ]−1,1[ we have f^, (x)= ∫_0 ^(π/2)   (dt/(1+xsin^2 t))   because of /xsin^2 t/<1   f^′ (x)= ∫_0 ^(π/2) ( Σ_(n=0) ^∝ (−1)^n x^n  sin^(2n) t)dt  =Σ_(n=0) ^∝ (−1)^n x^n  ∫_0 ^(π/2) sin^(2n) tdt= Σ_(n=0) ^∝ (−1)^n W_n  x^n   with W_n = ∫_0 ^(π/2)  sin^(2n) tdt  and the value of W_n  is known  (walliss integral)  f(x)= Σ_(n=0) ^∝ (((−1)^n )/(n+1)) W_n  x^(n+1)    +λ  λ=f(0)=0⇒   f(x)= Σ_(n=0) ^∝ (((−1)^n )/(n+1)) W_n  .x^(n+1)    .
letputf(x)=0π2ln(1+xsin2t)sin2tdtafterverifyingthatfisderivableon]1,1[wehavef,(x)=0π2dt1+xsin2tbecauseof/xsin2t/<1f(x)=0π2(n=0(1)nxnsin2nt)dt=n=0(1)nxn0π2sin2ntdt=n=0(1)nWnxnwithWn=0π2sin2ntdtandthevalueofWnisknown(wallissintegral)f(x)=n=0(1)nn+1Wnxn+1+λλ=f(0)=0f(x)=n=0(1)nn+1Wn.xn+1.

Leave a Reply

Your email address will not be published. Required fields are marked *