Question Number 49939 by turbo msup by abdo last updated on 12/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18

Commented by mathmax by abdo last updated on 03/Nov/19
![let determine a approximate value let A=∫_0 ^(π/2) sinx ln(1+x)dx by parts A =[−cosx ln(1+x)]_0 ^(π/2) −∫_0 ^(π/2) (−cosx)(dx/(1+x)) =∫_0 ^(π/2) ((cosx)/(1+x))dx we have cosx =Σ_(n=0) ^∞ (((−1)^n x^(2n) )/((2n)!)) =1−(x^2 /2) +(x^2 /(24))− ⇒1−(x^2 /2)≤cosx ≤1 ⇒((1−(x^2 /2))/(x+1))≤((cosx)/(x+1))≤(1/(x+1)) ⇒ ∫_0 ^(π/2) ((2−x^2 )/(2(x+1)))dx ≤∫_0 ^(π/2) ((cosx)/(x+1))dx ≤∫_0 ^1 (dx/(x+1)) ∫_0 ^1 (dx/(x+1)) =[ln(x+1)]_0 ^1 =ln(2) ∫_0 ^(π/2) ((2−x^2 )/(2(x+1)))dx =_(x+1=t) ∫_1 ^(1+(π/2)) ((2−(t−1)^2 )/(2t))dt =∫_1 ^(1+(π/2)) ((2−t^2 +2t−1)/t)dt =∫_1 ^(1+(π/2)) ((1−t^2 +2t)/t)dt =∫_1 ^(1+(π/2)) (dt/t) −∫_1 ^(1+(π/2)) tdt +π =ln(1+(π/2))−[(t^2 /2)]_1 ^(1+(π/2)) +π =ln(1+(π/2))−(1/2)((1+(π/2))^2 −1)+π ⇒ ln(1+(π/2))−(1/2)(π+(π^2 /4))+π≤A≤ln(2) ⇒ ln(1+(π/2))+(π/2)−(π^2 /8) ≤A ≤ln(2) and we can take v_0 =(1/2){ ln(1+(π/2))+(π/2)−(π^2 /8) +ln(2)} as aporoximate value for A](https://www.tinkutara.com/question/Q72809.png)
Commented by mathmax by abdo last updated on 03/Nov/19
