Menu Close

find-0-pi-2-sinx-ln-1-x-dx-




Question Number 49939 by turbo msup by abdo last updated on 12/Dec/18
find  ∫_0 ^(π/2) sinx ln(1+x) dx
find0π2sinxln(1+x)dx
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18
∫_0 ^(π/2) sinxln(1+x)dx≈(0.2×0.2)×nos smallest square
0π2sinxln(1+x)dx(0.2×0.2)×nossmallestsquare
Commented by mathmax by abdo last updated on 03/Nov/19
let determine a approximate value let A=∫_0 ^(π/2)  sinx ln(1+x)dx  by parts A =[−cosx ln(1+x)]_0 ^(π/2)  −∫_0 ^(π/2) (−cosx)(dx/(1+x))  =∫_0 ^(π/2)  ((cosx)/(1+x))dx   we have  cosx =Σ_(n=0) ^∞  (((−1)^n x^(2n) )/((2n)!))  =1−(x^2 /2) +(x^2 /(24))− ⇒1−(x^2 /2)≤cosx ≤1 ⇒((1−(x^2 /2))/(x+1))≤((cosx)/(x+1))≤(1/(x+1)) ⇒  ∫_0 ^(π/2)  ((2−x^2 )/(2(x+1)))dx ≤∫_0 ^(π/2)  ((cosx)/(x+1))dx ≤∫_0 ^1  (dx/(x+1))  ∫_0 ^1  (dx/(x+1)) =[ln(x+1)]_0 ^1 =ln(2)  ∫_0 ^(π/2)   ((2−x^2 )/(2(x+1)))dx =_(x+1=t)    ∫_1 ^(1+(π/2))   ((2−(t−1)^2 )/(2t))dt  =∫_1 ^(1+(π/2))   ((2−t^2 +2t−1)/t)dt =∫_1 ^(1+(π/2))   ((1−t^2 +2t)/t)dt  =∫_1 ^(1+(π/2))  (dt/t) −∫_1 ^(1+(π/2)) tdt +π =ln(1+(π/2))−[(t^2 /2)]_1 ^(1+(π/2))  +π  =ln(1+(π/2))−(1/2)((1+(π/2))^2 −1)+π ⇒  ln(1+(π/2))−(1/2)(π+(π^2 /4))+π≤A≤ln(2) ⇒  ln(1+(π/2))+(π/2)−(π^2 /8) ≤A ≤ln(2)  and we can take  v_0 =(1/2){ ln(1+(π/2))+(π/2)−(π^2 /8) +ln(2)} as aporoximate value for A
letdetermineaapproximatevalueletA=0π2sinxln(1+x)dxbypartsA=[cosxln(1+x)]0π20π2(cosx)dx1+x=0π2cosx1+xdxwehavecosx=n=0(1)nx2n(2n)!=1x22+x2241x22cosx11x22x+1cosxx+11x+10π22x22(x+1)dx0π2cosxx+1dx01dxx+101dxx+1=[ln(x+1)]01=ln(2)0π22x22(x+1)dx=x+1=t11+π22(t1)22tdt=11+π22t2+2t1tdt=11+π21t2+2ttdt=11+π2dtt11+π2tdt+π=ln(1+π2)[t22]11+π2+π=ln(1+π2)12((1+π2)21)+πln(1+π2)12(π+π24)+πAln(2)ln(1+π2)+π2π28Aln(2)andwecantakev0=12{ln(1+π2)+π2π28+ln(2)}asaporoximatevalueforA
Commented by mathmax by abdo last updated on 03/Nov/19
error of typo at line  8    ...=∫_1 ^(1+(π/2)) ((2−t^2 +2t−1)/(2t))dt =∫_1 ^(1+(π/2)) ((1−t^2  +2t)/(2t))dt  =∫_1 ^(1+(π/2))   (dt/(2t))−∫_1 ^(1+(π/2))  (t/2)dt +∫_1 ^(1+(π/2))  dt  =(1/2)ln(1+(π/2))−(1/4){ (1+(π/2))^2 −1}+(π/2) =.....
erroroftypoatline8=11+π22t2+2t12tdt=11+π21t2+2t2tdt=11+π2dt2t11+π2t2dt+11+π2dt=12ln(1+π2)14{(1+π2)21}+π2=..

Leave a Reply

Your email address will not be published. Required fields are marked *