Menu Close

find-0-pi-2-x-sinx-cosx-tan-2-x-cotan-2-x-dx-use-the-ch-x-pi-2-t-




Question Number 30180 by abdo imad last updated on 17/Feb/18
find  ∫_0 ^(π/2)    ((x sinx cosx)/(tan^2 x +cotan^2 x))dx .(use the ch.x=(π/2) −t).
find0π2xsinxcosxtan2x+cotan2xdx.(usethech.x=π2t).
Commented by abdo imad last updated on 24/Feb/18
ch.x=(π/2) −t give  I= ∫_0 ^(π/2) ((((π/2)−t)cost sint)/(cotan^2 t +tan^2 t))dt  = (π/2)∫_0 ^(π/2)  (dt/(tan^2 t +cotan^2 t))   −∫_0 ^(π/2)     ((sint?cost)/(tan^2 t +cotan^2 t))dt  ⇒  2I= (π/2) ∫_0 ^(π/2)     (dt/(tan^2 t +cotan^2 t)) dt  the ch. tant= u give  ∫_0 ^(π/2)      (dt/(tan^2 t +cotan^2 t))= ∫_0 ^∞     (1/(u^(2 )  +(1/u^2 ))) (du/(1+u^2 ))  = ∫_0 ^∞     (u^2 /((1+u^2 )(1+u^4 )))du= ∫_0 ^∞  ((1+u^2  −1)/((1+u^2 )(1+u^4 )))du  = ∫_0 ^∞   (du/(1+u^4 ))  −∫_0 ^∞   (du/((1+u^2 )(1+u^4 ))) the ch. u^4 =x give  ∫_0 ^∞   (du/(1+u^4 )) = ∫_0 ^∞   (((1/4)x^((1/4)−1) )/(1+x))dx= (1/4) (π/(sin((π/4))))  = (π/4) (1/(1/( (√2))))= ((π(√2))/4) .let decompose F(x)= (1/((1+u^2 )(1+u^4 )))  F(x)=  (1/((1+u^2 )( (u^2 +1)^2  −2u^2 )))  =  (1/((1+u^2 )(u^2  +1 −(√2)u)( u^2  +1 +(√2) u)))  = ((au+b)/(1+u^2 )) +((cu +d)/(u^2  −(√2)u +1)) + ((eu +f)/(u^2  + (√2)u +1)) ....be continued...
ch.x=π2tgiveI=0π2(π2t)costsintcotan2t+tan2tdt=π20π2dttan2t+cotan2t0π2sint?costtan2t+cotan2tdt2I=π20π2dttan2t+cotan2tdtthech.tant=ugive0π2dttan2t+cotan2t=01u2+1u2du1+u2=0u2(1+u2)(1+u4)du=01+u21(1+u2)(1+u4)du=0du1+u40du(1+u2)(1+u4)thech.u4=xgive0du1+u4=014x1411+xdx=14πsin(π4)=π4112=π24.letdecomposeF(x)=1(1+u2)(1+u4)F(x)=1(1+u2)((u2+1)22u2)=1(1+u2)(u2+12u)(u2+1+2u)=au+b1+u2+cu+du22u+1+eu+fu2+2u+1.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *