Question Number 59279 by Mr X pcx last updated on 07/May/19

Commented by tanmay last updated on 07/May/19
![f(x)=(x/(sinx)) f(0) undefined but when lim_(x→0) (x/(sinx))=1 f((π/2))=(π/2) ∫_0 ^(π/2) (x/(sinx))dx≈(1/2)[lim_(x→0) (x/(sinx))+f((π/2))]×(π/2) ≈(1/2)[1+(π/2)]×(π/2) ≈(1/2)[(π/2)+(π^2 /4)] pls check](https://www.tinkutara.com/question/Q59294.png)
Commented by maxmathsup by imad last updated on 10/May/19
![we have proved that x−(x^3 /6) ≤sinx ≤x for x ∈]0,(π/2)] ⇒ (1/x) ≤ (1/(sinx)) ≤ (1/(x−(x^3 /6))) ⇒1 ≤ (x/(sinx)) ≤ (1/(1−(x^2 /6))) ⇒(π/2) ≤ ∫_0 ^(π/2) (x/(sinx))dx ≤ ∫_0 ^(π/2) (dx/(1−(x^2 /6))) ∫_0 ^(π/2) (dx/(1−(x^2 /6))) =_(x=(√6)t) ∫_0 ^(π/(2(√6))) (((√6)dt)/(1−t^2 )) =((√6)/2) ∫_0 ^(π/(2(√6))) {(1/(1−t)) +(1/(1+t))}dt =((√6)/2)[ln∣((1+t)/(1−t))∣]_0 ^(π/(2(√6))) =((√6)/2){ln(((1+(π/(2(√6))))/(1−(π/(2(√6))))))}=((√6)/2) ln(((2(√6)+π)/(2(√6)−π))) ⇒ (π/2) ≤ ∫_0 ^(π/2) (x/(sinx)) dx ≤ ((√6)/2)ln(((2(√6) +π)/(2(√6)−π))) .if we put α_0 =((√6)/2)ln(((2(√6)+π)/(2(√6)−π))) we can take (((π/2)+α_0 )/2) =(π/4) +(α_0 /2) as approximate value for this integral .](https://www.tinkutara.com/question/Q59462.png)
Commented by maxmathsup by imad last updated on 10/May/19

Commented by tanmay last updated on 10/May/19
![i have calculated the area ... ∫_a ^b f(x)dx≈(1/2)[f(a)+f(b)]×(b−a)](https://www.tinkutara.com/question/Q59465.png)
Commented by maxmathsup by imad last updated on 10/May/19
