Menu Close

find-0-pi-2-x-sinx-dx-




Question Number 59279 by Mr X pcx last updated on 07/May/19
find  ∫_0 ^(π/2)    (x/(sinx))dx
find0π2xsinxdx
Commented by tanmay last updated on 07/May/19
f(x)=(x/(sinx))   f(0) undefined  but when lim_(x→0)  (x/(sinx))=1  f((π/2))=(π/2)  ∫_0 ^(π/2) (x/(sinx))dx≈(1/2)[lim_(x→0) (x/(sinx))+f((π/2))]×(π/2)  ≈(1/2)[1+(π/2)]×(π/2)  ≈(1/2)[(π/2)+(π^2 /4)]  pls check
f(x)=xsinxf(0)undefinedbutwhenlimx0xsinx=1f(π2)=π20π2xsinxdx12[limx0xsinx+f(π2)]×π212[1+π2]×π212[π2+π24]plscheck
Commented by maxmathsup by imad last updated on 10/May/19
 we have proved that  x−(x^3 /6) ≤sinx ≤x  for x ∈]0,(π/2)] ⇒  (1/x) ≤ (1/(sinx)) ≤ (1/(x−(x^3 /6))) ⇒1 ≤ (x/(sinx)) ≤ (1/(1−(x^2 /6))) ⇒(π/2) ≤ ∫_0 ^(π/2)  (x/(sinx))dx ≤ ∫_0 ^(π/2)   (dx/(1−(x^2 /6)))  ∫_0 ^(π/2)   (dx/(1−(x^2 /6))) =_(x=(√6)t)     ∫_0 ^(π/(2(√6)))     (((√6)dt)/(1−t^2 )) =((√6)/2) ∫_0 ^(π/(2(√6)))   {(1/(1−t)) +(1/(1+t))}dt  =((√6)/2)[ln∣((1+t)/(1−t))∣]_0 ^(π/(2(√6)))   =((√6)/2){ln(((1+(π/(2(√6))))/(1−(π/(2(√6))))))}=((√6)/2) ln(((2(√6)+π)/(2(√6)−π))) ⇒  (π/2) ≤ ∫_0 ^(π/2)   (x/(sinx)) dx ≤ ((√6)/2)ln(((2(√6) +π)/(2(√6)−π))) .if we put α_0 =((√6)/2)ln(((2(√6)+π)/(2(√6)−π))) we can  take (((π/2)+α_0 )/2) =(π/4) +(α_0 /2) as approximate value for this integral .
wehaveprovedthatxx36sinxxforx]0,π2]1x1sinx1xx361xsinx11x26π20π2xsinxdx0π2dx1x260π2dx1x26=x=6t0π266dt1t2=620π26{11t+11+t}dt=62[ln1+t1t]0π26=62{ln(1+π261π26)}=62ln(26+π26π)π20π2xsinxdx62ln(26+π26π).ifweputα0=62ln(26+π26π)wecantakeπ2+α02=π4+α02asapproximatevalueforthisintegral.
Commented by maxmathsup by imad last updated on 10/May/19
sir Tanmay what s formulae you have used in your answer.
sirTanmaywhatsformulaeyouhaveusedinyouranswer.
Commented by tanmay last updated on 10/May/19
i have calculated the area ...  ∫_a ^b f(x)dx≈(1/2)[f(a)+f(b)]×(b−a)
ihavecalculatedtheareaabf(x)dx12[f(a)+f(b)]×(ba)
Commented by maxmathsup by imad last updated on 10/May/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *