Menu Close

find-0-pi-4-dt-1-cos-2-t-3-




Question Number 35058 by math khazana by abdo last updated on 14/May/18
find  ∫_0 ^(π/4)     (dt/((1+cos^2 t)^3 ))
find0π4dt(1+cos2t)3
Commented by abdo mathsup 649 cc last updated on 18/May/18
let put I = ∫_0 ^(π/4)      (dt/((1+cos^2 t)^3 ))   I = ∫_0 ^(π/4)      (dt/((1+((1+cos(2t))/2))^3 ))  = 8 ∫_0 ^(π/4)     (dt/((3+cos(2t))^3 )) =_(2t=x)    8 ∫_0 ^(π/2)       (1/((3+cosx)^3 ))(dx/2)  = 4 ∫_0 ^(π/2)       (dx/((3+cosx)^3 ))  .changement tan((x/2))= t  give  I =  4  ∫_0 ^1      (1/((3 + ((1−t^2 )/(1+t^2 )))^3 ))  ((2dt)/(1+t^2 ))  I  = 8  ∫_0 ^1    (((1+t^2 )^2 )/((3 +3t^2   +1−t^2 )^3 )) dt  I  = 8 ∫_0 ^1       (((1+t^2 )^2 )/((4 +2t^2 )^3 )) dt = ∫_0 ^1    (((1+t^2 )^2 )/((2+t^2 )^3 )) dt  I = ∫_0 ^1     ((t^4   +2t^2  +1)/(8  +3.2^2 t^2  +3.2.t^4  +t^6 )) dt  = ∫_0 ^1       ((t^4  +2t^2  +1)/(t^6   +6t^4   +12t^2   +8)) dt   let decompose  F(t) = ((t^4  +2t^2  +1)/(t^6  +6t^4  +12t^2  +8)).....be continued...
letputI=0π4dt(1+cos2t)3I=0π4dt(1+1+cos(2t)2)3=80π4dt(3+cos(2t))3=2t=x80π21(3+cosx)3dx2=40π2dx(3+cosx)3.changementtan(x2)=tgiveI=4011(3+1t21+t2)32dt1+t2I=801(1+t2)2(3+3t2+1t2)3dtI=801(1+t2)2(4+2t2)3dt=01(1+t2)2(2+t2)3dtI=01t4+2t2+18+3.22t2+3.2.t4+t6dt=01t4+2t2+1t6+6t4+12t2+8dtletdecomposeF(t)=t4+2t2+1t6+6t4+12t2+8..becontinued
Answered by MJS last updated on 16/May/18
∫(dt/((1+cos^2 (t))^3 ))=            [cos(t)=(1/(sec(t))); sec^2 (t)=tan^2 (t)+1]  =∫((sec^2 (t)(tan^2 (t)+1)^2 )/((tan^2 (t)+2)^3 ))dt=            [u=tan(t) → dt=(du/(sec^2 (t)))]  =∫(((u^2 +1)^2 )/((u^2 +2)^3 ))du=∫(du/(u^2 +2))−2∫(du/((u^2 +2)^2 ))+∫(du/((u^2 +2)^3 ))=              ∫(du/(u^2 +2))=                      [v=((√2)/2)u → du=dv(√2)]            =((√2)/2)∫(dv/(v^2 +1))=((√2)/2)arctan(v)=((√2)/2)arctan(((√2)/2)u)              −2∫(du/((u^2 +2)^2 ))=                      [∫(du/((au^2 +b)^n ))=(u/(2b(n−1)(au^2 +b)^(n−1) ))+((2n−3)/(2b(n−1)))∫(du/((au^2 +b)^(n−1) ))]            =−2((u/(4(u^2 +2)))+(1/4)∫(du/(u^2 +2)))=            =−(u/(2(u^2 +2)))−((√2)/4)arctan(((√2)/2)u)              ∫(du/((u^2 +2)^3 ))=(u/(8(u^2 +2)^2 ))+(3/8)∫(du/((u^2 +2)^2 ))=            =(u/(8(u^2 +2)^2 ))+(3/8)((u/(4(u^2 +2)))+((√2)/8)arctan(((√2)/2)u))=            =(u/(8(u^2 +2)^2 ))+((3u)/(32(u^2 +2)))+((3(√2))/(64))arctan(((√2)/2)u)    =((19(√2))/(64))arctan(((√2)/2)u)−((13u)/(32(u^2 +2)))+(u/(8(u^2 +2)^2 ))=  =((19(√2))/(64))arctan(((√2)/2)tan(t))−((tan(t)(13tan^2 (t)+22))/(32(tan^2 (t)+2)^2 ))+C    ∫_0 ^(π/4) (dt/((1+cos^2 (t))^3 ))=((19(√2))/(64))arctan(((√2)/2))−((35)/(288))
dt(1+cos2(t))3=[cos(t)=1sec(t);sec2(t)=tan2(t)+1]=sec2(t)(tan2(t)+1)2(tan2(t)+2)3dt=[u=tan(t)dt=dusec2(t)]=(u2+1)2(u2+2)3du=duu2+22du(u2+2)2+du(u2+2)3=duu2+2=[v=22udu=dv2]=22dvv2+1=22arctan(v)=22arctan(22u)2du(u2+2)2=[du(au2+b)n=u2b(n1)(au2+b)n1+2n32b(n1)du(au2+b)n1]=2(u4(u2+2)+14duu2+2)==u2(u2+2)24arctan(22u)du(u2+2)3=u8(u2+2)2+38du(u2+2)2==u8(u2+2)2+38(u4(u2+2)+28arctan(22u))==u8(u2+2)2+3u32(u2+2)+3264arctan(22u)=19264arctan(22u)13u32(u2+2)+u8(u2+2)2==19264arctan(22tan(t))tan(t)(13tan2(t)+22)32(tan2(t)+2)2+Cπ40dt(1+cos2(t))3=19264arctan(22)35288
Commented by abdo mathsup 649 cc last updated on 15/May/18
thank you sir Mjs for this hard work...
thankyousirMjsforthishardwork
Commented by MJS last updated on 16/May/18
you′re welcome, it keeps my brains young
yourewelcome,itkeepsmybrainsyoung
Commented by abdo mathsup 649 cc last updated on 16/May/18
are you a doctor or enjener sir Mjs...
areyouadoctororenjenersirMjs

Leave a Reply

Your email address will not be published. Required fields are marked *