Question Number 35058 by math khazana by abdo last updated on 14/May/18
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{cos}^{\mathrm{2}} {t}\right)^{\mathrm{3}} } \\ $$
Commented by abdo mathsup 649 cc last updated on 18/May/18
$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{cos}^{\mathrm{2}} {t}\right)^{\mathrm{3}} }\: \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right)^{\mathrm{3}} } \\ $$$$=\:\mathrm{8}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{dt}}{\left(\mathrm{3}+{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{3}} }\:=_{\mathrm{2}{t}={x}} \:\:\:\mathrm{8}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}+{cosx}\right)^{\mathrm{3}} }\frac{{dx}}{\mathrm{2}} \\ $$$$=\:\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{3}+{cosx}\right)^{\mathrm{3}} }\:\:.{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)=\:{t} \\ $$$${give}\:\:{I}\:=\:\:\mathrm{4}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}\:+\:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{3}} }\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${I}\:\:=\:\mathrm{8}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{3}\:+\mathrm{3}{t}^{\mathrm{2}} \:\:+\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dt} \\ $$$${I}\:\:=\:\mathrm{8}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{4}\:+\mathrm{2}{t}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dt}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{2}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dt} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{t}^{\mathrm{4}} \:\:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}}{\mathrm{8}\:\:+\mathrm{3}.\mathrm{2}^{\mathrm{2}} {t}^{\mathrm{2}} \:+\mathrm{3}.\mathrm{2}.{t}^{\mathrm{4}} \:+{t}^{\mathrm{6}} }\:{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{t}^{\mathrm{4}} \:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{6}} \:\:+\mathrm{6}{t}^{\mathrm{4}} \:\:+\mathrm{12}{t}^{\mathrm{2}} \:\:+\mathrm{8}}\:{dt}\:\:\:{let}\:{decompose} \\ $$$${F}\left({t}\right)\:=\:\frac{{t}^{\mathrm{4}} \:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{6}} \:+\mathrm{6}{t}^{\mathrm{4}} \:+\mathrm{12}{t}^{\mathrm{2}} \:+\mathrm{8}}…..{be}\:{continued}… \\ $$
Answered by MJS last updated on 16/May/18
$$\int\frac{{dt}}{\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({t}\right)\right)^{\mathrm{3}} }= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{cos}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{sec}\left({t}\right)};\:\mathrm{sec}^{\mathrm{2}} \left({t}\right)=\mathrm{tan}^{\mathrm{2}} \left({t}\right)+\mathrm{1}\right] \\ $$$$=\int\frac{\mathrm{sec}^{\mathrm{2}} \left({t}\right)\left(\mathrm{tan}^{\mathrm{2}} \left({t}\right)+\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{tan}^{\mathrm{2}} \left({t}\right)+\mathrm{2}\right)^{\mathrm{3}} }{dt}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{u}=\mathrm{tan}\left({t}\right)\:\rightarrow\:{dt}=\frac{{du}}{\mathrm{sec}^{\mathrm{2}} \left({t}\right)}\right] \\ $$$$=\int\frac{\left({u}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }{du}=\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{2}}−\mathrm{2}\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }= \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{2}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{v}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{u}\:\rightarrow\:{du}={dv}\sqrt{\mathrm{2}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{dv}}{{v}^{\mathrm{2}} +\mathrm{1}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left({v}\right)=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{u}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\int\frac{{du}}{\left({au}^{\mathrm{2}} +{b}\right)^{{n}} }=\frac{{u}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)\left({au}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} }+\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)}\int\frac{{du}}{\left({au}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} }\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=−\mathrm{2}\left(\frac{{u}}{\mathrm{4}\left({u}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{2}}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:=−\frac{{u}}{\mathrm{2}\left({u}^{\mathrm{2}} +\mathrm{2}\right)}−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{u}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }=\frac{{u}}{\mathrm{8}\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{8}}\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{{u}}{\mathrm{8}\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{8}}\left(\frac{{u}}{\mathrm{4}\left({u}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{u}\right)\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{{u}}{\mathrm{8}\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}{u}}{\mathrm{32}\left({u}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{u}\right) \\ $$$$ \\ $$$$=\frac{\mathrm{19}\sqrt{\mathrm{2}}}{\mathrm{64}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{u}\right)−\frac{\mathrm{13}{u}}{\mathrm{32}\left({u}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{{u}}{\mathrm{8}\left({u}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{19}\sqrt{\mathrm{2}}}{\mathrm{64}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}\left({t}\right)\right)−\frac{\mathrm{tan}\left({t}\right)\left(\mathrm{13tan}^{\mathrm{2}} \left({t}\right)+\mathrm{22}\right)}{\mathrm{32}\left(\mathrm{tan}^{\mathrm{2}} \left({t}\right)+\mathrm{2}\right)^{\mathrm{2}} }+{C} \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\frac{{dt}}{\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({t}\right)\right)^{\mathrm{3}} }=\frac{\mathrm{19}\sqrt{\mathrm{2}}}{\mathrm{64}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)−\frac{\mathrm{35}}{\mathrm{288}} \\ $$
Commented by abdo mathsup 649 cc last updated on 15/May/18
$${thank}\:{you}\:{sir}\:{Mjs}\:{for}\:{this}\:{hard}\:{work}… \\ $$
Commented by MJS last updated on 16/May/18
$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome},\:\mathrm{it}\:\mathrm{keeps}\:\mathrm{my}\:\mathrm{brains}\:\mathrm{young} \\ $$
Commented by abdo mathsup 649 cc last updated on 16/May/18
$${are}\:{you}\:{a}\:{doctor}\:{or}\:{enjener}\:{sir}\:{Mjs}… \\ $$