Question Number 35058 by math khazana by abdo last updated on 14/May/18

Commented by abdo mathsup 649 cc last updated on 18/May/18

Answered by MJS last updated on 16/May/18
![∫(dt/((1+cos^2 (t))^3 ))= [cos(t)=(1/(sec(t))); sec^2 (t)=tan^2 (t)+1] =∫((sec^2 (t)(tan^2 (t)+1)^2 )/((tan^2 (t)+2)^3 ))dt= [u=tan(t) → dt=(du/(sec^2 (t)))] =∫(((u^2 +1)^2 )/((u^2 +2)^3 ))du=∫(du/(u^2 +2))−2∫(du/((u^2 +2)^2 ))+∫(du/((u^2 +2)^3 ))= ∫(du/(u^2 +2))= [v=((√2)/2)u → du=dv(√2)] =((√2)/2)∫(dv/(v^2 +1))=((√2)/2)arctan(v)=((√2)/2)arctan(((√2)/2)u) −2∫(du/((u^2 +2)^2 ))= [∫(du/((au^2 +b)^n ))=(u/(2b(n−1)(au^2 +b)^(n−1) ))+((2n−3)/(2b(n−1)))∫(du/((au^2 +b)^(n−1) ))] =−2((u/(4(u^2 +2)))+(1/4)∫(du/(u^2 +2)))= =−(u/(2(u^2 +2)))−((√2)/4)arctan(((√2)/2)u) ∫(du/((u^2 +2)^3 ))=(u/(8(u^2 +2)^2 ))+(3/8)∫(du/((u^2 +2)^2 ))= =(u/(8(u^2 +2)^2 ))+(3/8)((u/(4(u^2 +2)))+((√2)/8)arctan(((√2)/2)u))= =(u/(8(u^2 +2)^2 ))+((3u)/(32(u^2 +2)))+((3(√2))/(64))arctan(((√2)/2)u) =((19(√2))/(64))arctan(((√2)/2)u)−((13u)/(32(u^2 +2)))+(u/(8(u^2 +2)^2 ))= =((19(√2))/(64))arctan(((√2)/2)tan(t))−((tan(t)(13tan^2 (t)+22))/(32(tan^2 (t)+2)^2 ))+C ∫_0 ^(π/4) (dt/((1+cos^2 (t))^3 ))=((19(√2))/(64))arctan(((√2)/2))−((35)/(288))](https://www.tinkutara.com/question/Q35111.png)
Commented by abdo mathsup 649 cc last updated on 15/May/18

Commented by MJS last updated on 16/May/18

Commented by abdo mathsup 649 cc last updated on 16/May/18
